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Abstract 
 

In this paper, we will first construct a Robertson – Walker like metric in (2 + 1) – dimensional space. The 
easiest way of doing this is to consider a 2-dimensional coordinate space as a space embedded in a 3-
dimensional hypersurface. The curvature of each surface is determined using the spatial part of the 
Robertson – Walker like metric constructed. Our main goal is to find out if the Robertson – Walker like 
metric in (2 + 1) – dimensional space can be used as a prototype model to study Robertson – Walker in (3 
+ 1) dimensions since calculations involved in higher dimensions are tedious. 
 

 
Keywords: Robertson – Walker metric; curvature; hypersurface; spacetime; Christoffel symbols; Riemann 

curvature; Gaussian curvature. 
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1. Introduction 
 
In mathematics, curvature is one of the strongly related concepts in geometry. Geometry as defined by [1], is 
a branch of mathematics concerned with questions of shape, size, relative position of figures and the 
properties of space. The study of geometry started as early as the 6th century BC. It began to see elements of 
formal mathematical science emerging in Greek mathematics [2]. Also in general relativity, curvature is a 
very important concept and it can be described in tensorial terms. It is a mathematical quantity involving the 
second derivative of the metric which represents the essence of a curve space. The space is curved if the 
curvature does not vanish. 
 
Geometry has evolved through many phases and into modern times, it has expanded into non – Euclidean 
geometry and manifolds describing spaces that lie beyond the normal range of human experience. While 
geometry has evolved significantly throughout the years, there are some general concepts that are 
fundamental. These include the concept of point, line, plane, distance, angle, surface and curve as well as the 
more advanced notions of topology and manifolds [3]. Geometry has applications in many fields, including 
art, architecture, physics as well as to other branches of mathematics [4]. In this study, we looked at some 
concepts of geometry, specifically curvature of surfaces and distance. 
 
Furthermore, curvature is seen as the rate of change in direction of a curve with respect to distance along the 
curve. To measure the curvature of a surface at a point, Euler in 1760, looked at cross sections of the surface 
made by planes that contain the line perpendicular (or normal) to the surface at the point. Euler called the 
curvatures of these cross sections the normal curvatures of the surface at the point. If the curve is a section of 
a surface, that is, the curve formed by the intersection of a plane with the surface, then the curvature of the 
surface at any given point can be determined by appropriate sectioning planes. The most useful planes are 
two that both contain the normal to the surface at the point. One of these planes produces the section with the 
greatest curvature among all such sections and the other produces that with the least. These two planes 
define the two so – called principal directions on the surface at the point. These directions lie at right angles 
to one another. The curvatures in the principal directions are called the principal curvatures of the surface. 
 
The mean curvature of the surface at the point is either the sum of the principal curvatures or half that sum. 
The Gaussian curvature is the product of the principal curvatures. Gaussian curvature was used for the study 
because the researchers considered an isometric space which is an intrinsic characteristic of the surface 
independent of the coordinate system used. This is referred to as the Gauss’ Theorema Egregium. 
 
In classical cosmology theory, the cosmological principle is very paramount, which states that, on large 
scale, the Universe is homogeneous and isotropic [5,6,7]. That means that the Universe looks the same from 
each point and in all directions. These do not automatically imply one another. For example, a Universe with 
a uniform magnetic field is homogeneous, as all points are the same, but it fails to be isotropic because 
direction along the field lines can be distinguished from those perpendicular to them. 
 
According to [8], the assumption that the Universe is homogeneous and isotropic is the foundation for the 
majority of modern cosmological models which helps scientist to study the nature of the Universe. Our 
Universe is currently best described using the standard cosmological model of particle physics and its 
extensions which is the Friedmann Robertson Walker (FRW) model [9,10,11]. The Friedmann Robertson 
Walker (FRW) models are established on the basis of the assumption that the Universe is homogeneous and 
isotropic on a large scale [12]. This implies that when this homogeneity and isotropy or both are broken 
down then these models can no longer predict the nature and behaviour of the Universe. 
 
In the study done by [13], the models of the Universe were analysed consistent with the observed isotropy, 
entropy, element abundances and with the existence of galaxies. They emphasized on the four important 
facts about the Universe, for which theoretical explanations are still being sought which includes the 
Universe being considered as homogeneous and isotropic on a large scale. 
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A lot of research have been done on the relationship between the sign of curvature and shape of the 
Universe. There are basically three possible shapes of the Universe which is related to the sign of curvature 
of the space. These are; a flat Universe (Euclidean or zero curvature), a spherical or closed Universe 
(positive curvature) and hyperbolic or open Universe (negative curvature). 
 

 
 

Fig. 1. Surfaces of zero curvature, positive curvature and negative curvature 
 
In general relativity the metric tensor describes the local geometry of spacetime. Metric in general relates 
physical distances or intervals between events separated in space or time to the coordinates used to describe 
their position. In general relativity, four – dimensional spacetime in which the separation between space and 
time coordinates are not clear are used. However, it is possible to define a unique time coordinate called 
cosmic time and three spatial coordinates in a homogeneous and isotropic cosmology. The Robertson – 
Walker metric in general describes a curved space which is either expanding or contracting with cosmic 
time. It is named after the American mathematician and cosmologist, Howard Percy Robertson (1903 - 
1961) and the English mathematician, Arthur Geoffrey Walker (1909 - 2001) [14]. 
 
In the standard model of cosmology, the homogeneous and isotropic universe is described by the Robertson 
– Walker metric, which in spherical coordinates has a line element denoted by [15,16,17,18,19]; 
 

2
2 2 2 2 2 2 2

2
( ) sin

1

dr
ds dt s t r d d

kr
  

 
          

 

where t and  
, ,r  

 are time and space spherical coordinates, and the signature of the metric is 
( , , , )   

, s(t) is an unknown function of time and k describes the curvature of the spatial section with values which is 
equals +1, 0 or -1. 
 
In another scenario, [20] considered an observer (say, A) in an inertial frame who measures the density of 
stars and their velocities in the space around him. Because of the homogeneity and isotropy of the space, he 

would see the same mean density of stars (at one time, t) in the two different directions r and , 

. Another observer (say, B) in another inertial frame, looking in the direction  from 

his location would also see the same density of stars, . The velocity distribution of stars 

would also look the same to both observers, in fact in all directions, for instance in the  direction, 

. Hence, we conclude that the universe is homogeneous and isotropic. 
 
When faced with a very difficult problem in mathematics, it is a good idea to start by solving an easier 
version of the same problem. So instead of thinking about the shape of our universe, we begin one 
dimension down, by considering how 2 – dimensional creatures living in a 2 – dimensional universe might 
think about possible shapes or curvatures for their universe [21].  
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According to [22], another miracle of the General Relativity models of the universe which cannot come out 
of the Newtonian model is the spatial curvature of the universe. We always think in terms of flat 3 – 
dimensional Euclidean geometry which is adequate for all terrestrial purposes. However, there are other 
geometries which satisfy the requirement that they should be same at all points in an isotropic universe. 
 
If a two – dimensional space has curvature which is homogeneous and isotropic; its geometry can be 
specified by two quantities, k and S. The number k, called the curvature constant/parameter, k = 0 for a flat 
space, k = +1 for a positively curved space and k = -1 for a negatively curved space. If the space is curved, 
then the quantity S, which has dimensions of length, is the radius of curvature [23]. 
 

2. Main Thrust 
 
First, the Robertson – Walker like metric in (2 + 1) – dimensional space is constructed. The easiest way to 
do this is to consider a 2 – dimensional coordinate space as a space embedded in a 3 – dimensional 
“hypersurface”. For a space of constant negative curvature, the hypersurface is described by 
 

     
2 2 21 2 3 2x x x S                                     (1) 

 

where S is independent of the coordinates 
 1, 2,3ix i 

, but may depend on time [24] and the metric. 
 

     
2 2 22 1 2 3d dx dx dx                               (2) 

 
The Cartesian coordinates may be retrieved from the spherical coordinates (radius of the Universe S, 

inclination


, azimuth ) and clearly Equation 1 admits of the transformation; 
 

1 sinh cosx S  
 

2 sinh sinx S  
 

3 coshx S 
 

 
From which we find 
 

2 2 2 2 2[ sinh ]d S d d      
 
Set 
 

sinhr 
 

coshdr d 
 

 
Then 
 

2 2 2
2

2 2 2cosh 1 sinh 1

dr dr dr
d

r


 
  

    
2

2 2 2 2

21

dr
d S r d

r
 

 
  

   
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The line element for the (2 + 1) spacetime is therefore given by; 
 

2 2 2 2ds c dt d        

       

2
2 2 2 2 2

21

dr
c dt S r d

r


 
    

                                    (3) 

 
For a space of constant positive curvature, the Robertson – Walker metric is derived by considering a 2 – 
dimensional coordinate space as a space embedded in the 3 – dimensional hypersurface described by the 
equation; 
 

     
2 2 21 2 3 2x x x S                                           (4) 

 
where S is a constant and the metric  
 

     
2 2 22 1 2 3d dx dx dx                                    (5) 

 
Setting 
 

1 sin cosx S  
 

2 sin sinx S  
 

2 cosx S 
 

 
We have 
 

2 2 2 2 2sind S d d        
 
If we further substitute; 
 

sinr 
 

cosdr d 
 

2 2 2
2

2 2 2cos 1 sin 1

dr dr dr
d

r


 
  

  , hence 
2

2 2 2 2

21

dr
d S r d

r
 

 
  

   
 

Where 
sinr 

  
 
The line element of (2 + 1) – dimensional spacetime is therefore given by; 
 

2 2 2 2ds c dt d   

       

2
2 2 2 2 2

21

dr
c dt S r d

r


 
   

 
                                       (6) 
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Equations (3) and (6) can be combined into a single expression by introducing a parameter k that takes 

values 1 : 
 

2
2 2 2 2 2 2

21

dr
ds c dt S r d

kr


 
   

 
                         (7) 

 
In analogy with the Robertson – Walker metric, the above metric can be called the Robertson – Walker 
metric in (2 + 1) – dimensional space time. The metric also describes a 2 – dimensional coordinate space of 
zero curvature, (that is, a flat 2 – dimensional space), which is the case for k = 0. Thus, when k = 0, we have 
a space of zero curvature, that is flat space, k = 1 is a space of positive curvature, which is a closed space and 
k = -1 describes a space of negative curvature, which is an open space.  
 
To determine the curvature of each surface, we use spatial part of the Robertson – Walker metric. The 
various surfaces and their curvatures are discussed below. 
 
For positive curvature (k = 1), the metric of the spatial part is given by; 
 

2
2 2 2 2

21

dr
d S r d

r
 

 
  

 
                                                 (8) 

 

Then   

2

2

2 2

0
1

0
ij

S

g r

S r

 
    
 

, 

 

Where 
   , , (1, 2)i j r  

  
 
Computation of the non – vanishing Christoffel symbols yields; 
 

1

2
i ii
ii i

ii

g

g x


  


,              

1
11 21

r

r
 

  

1

2
i ii
ij j

ii

g

g x


  


,                

2
21

1

r
 

 

1

2

jji
jj i

ii

g

g x


  


,              

1 2
22 (1 )r r   

  
 
For a 2 – D space, the only non – zero components of the curvature tensor 
 

2 22 21

2

jh jk r s r slh lk
jlhk rs jh lk jk lhk l k j h j h l

g gg g
R g

x x x x x x x x

   
                     

                   (9) 

 

The components 1212R
 and 2121R

 with 1212 2121R R
. 

 
Using the Christoffel symbols obtained above and equation 9, we had; 
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2 2 2 2
1 1 1 1 2 2 2 211 21 22 12

1212 11 11 22 12 21 22 11 22 12 212 2 2 1 1 1 1 2

1

2

g g g g
R g g

x x x x x x x x

    
                               

  

   
2

1 1 2 222
11 11 22 22 12 211 1

1

2

g
g g

x x

 
       

     
 

         

2 2

1212 212121

S r
R R

r
  

  
 

Now the curvature of a 2 – D space described by the metric ijg
is given by the Gaussian curvature 

 

1212R
K

g
                                                             (10) 

 
Where g is the determinant of the metric. 
 
In this case 
 

4 2

21

S r
g

r

  and

2 2 2

2 4 2 2

1 1

1

S r r
K

r S r S


  
  

 
This proves that the space indeed has a positive curvature. 
 
For a 2 – D space with k = -1, we have 
 

2
2 2 2 2

21

dr
d S r d

r
 

 
  

 
                                    (11) 

2

2

2 2

0
1

0
ij

S

g r

S r

 
    
   

 

If ( , ) ( , ) (1,2)i j r   , the non – vanishing Christoffel symbols are; 
 

1

2
i ii
ii i

ii

g

g x


  


,           

1
11 21

r

r
  

  

 

1

2
i ii
ij j

ii

g

g x


  


,         

2
21

1

r
 

 

1

2

jji
jj i

ii

g

g x


  


,          

1 2
22 (1 )r r   

 
 
The only non – zero independent component of the Riemann curvature tensor is given by; 
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2 2 2 2
1 1 1 1 2 2 2 211 21 22 12

1212 11 11 22 12 21 22 11 22 12 212 2 2 1 1 1 1 2

1

2

g g g g
R g g

x x x x x x x x

    
                               

              

   
2

1 1 2 222
11 11 22 22 12 211 1

1

2

g
g g

x x

 
       

    
 

Thus 

2 2

1212 21

S r
R

r

  

 
This yields for the Gaussian curvature;  
 

1212R
K

g
 

, where 

4 2

21

S r
g

r

  is the determinant of the metric. 

 

Hence the curvature of the space is 

2 2 2

2 4 2 2

1 1

1

S r r
K

r S r S


    


. 

 
Hence a 2 – D space with k = -1 is indeed a space with negative curvature. 
 
Finally, for a 2 – D space with k = 0, that one with line element; 
 

2 2 2 2 2d S dr r d                                              (12) 

 
With metric 
 

2

2 2

0

0
ij

S
g

S r

 
  
 

                                             (13) 

 
The non – vanishing Christoffel symbols are 
 

1

2
i ii
ij j

ii

g

g x


  


,              

2
21

1

r
 

 

1

2

jji
jj i

ii

g

g x


  


,             

1
22 r  

 
 
The only non – zero independent component. 
 

2 2 2 2
1 1 1 1 2 2 2 211 21 22 12

1212 11 11 22 12 21 22 11 22 12 212 2 2 1 1 1 1 2

1

2

g g g g
R g g

x x x x x x x x

    
                               

            

 
2

2 222
22 12 211 1

1

2

g
g

x x

 
    

    

            
 2 21
2 0

2
S S  
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The Gaussian curvature is given by 1212R
K

g
  where 

4 2g S r is the determinant of the metric (13). The 

Gaussian curvature; K = 0, hence the 2 – D space with k = 0 is indeed a flat space. 
 

3. Results and Discussion 
 
In (3 + 1) – dimensions, the Robertson – Walker metric is given by; 
 

 
2

2 2 2 2 2 2 2 2

2
sin

1

dr
ds c dt S r d d

kr
  

 
     

                                                (14) 

 
From the illustrations above, we observed that in (2 + 1) – dimensions, the Robertson – Walker metric is 
given by; 
 

 

2
2 2 2 2 2 2

21

dr
ds c dt S r d

kr


 
   

   
 
The curvature in both (3 + 1) and (2 + 1) dimensions is determine by the value of the curvature parameter, k. 
When k = 0, we have a space of zero curvature which is also known as a Euclidean / flat space. The 
Gaussian curvature; K = 0, also confirms that the space is indeed flat or without any curvature. When k = 1, 
we have a space of positive curvature which is also known as a closed space. The Gaussian curvature, 

2

1
K

S
 , proves that the space has a positive curvature. When k = -1, we have a space of negative curvature 

which is also known as an open space. The Gaussian curvature,
2

1
K

S
  , also proves that the space indeed 

has a negative curvature. One interesting feature about the (2 + 1) – dimensional universe is that, any 2 – 
dimensional creature walking on this surface will always see its surface to be flat irrespective of the 
curvature of the space. 
 

4. Conclusion 
 
In conclusion, the Robertson – Walker metric in (2 + 1) – dimensional space has been derived and can be 
used as a toy model to study Robertson – Walker metric in (3 + 1) – dimensional space. 
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