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1 Introduction

There is rapid progress in research on affine differential geometry within the last two decades.
Particularly on affine immersion and submersion. However, there are more to be done in these
aspects. Most of the results in affine immersions are obtained on immersions of co-dimension one,
two, three or four. However, some of these results can be extended to the affine immersion of general
co-dimension p.

The following are some of the progress made in affine immersions; Katsumi Nomizu and Luc
Vrancken in [4] investigate the geometry of nondegenerate affine surfaces in R4. Katsumi Nomizu
and Takeshi Sasaki in [2] developed a basic machinery for centroaffine immersions of co-dimension
2 and obtain two second fundamental forms h1 and h2 and two cubic forms C1 and C2, in which
the vanishing of h1 or h2 is given a geometric interpretation. Tsasa Lusala in [3] studied the
vanishing of the traceless part of the difference tensor field C between the Levi-Civita conections
of the first and the third fundamental forms for non-degenerate surface immersions in S3(1) where
a geometric meaning is given. Katsumi Nomizu and U. Pinkall in [6] showed that a non-degenerate
hypersurface M with an affine structure of Rn+1 in which the cubic form C is divisible by the
second fundamental form h is a hyperquadric and in [7], they proved several theorems on isometric
immersions in Riemannian and Pseudo-Riemannian geometry. In [8] Hitoshi Furuhata and Luc
Vrancken investigate those immersions for which the center map is affine congruent with the
original hypersurface. In terms of centroaffine geometry, they showed that such hypersurfaces
provide examples of hypersurfaces with vanishing centroaffine Tchebychev operator. They also
characterize them in equiaffine differential geometry using a curvature condition involving the
covariant derivative of the shape operator. Katsumi Nomizu and Brian Smyth in [9] determined
the holonomy groups of hypersurfaces, a generalization of the main theorem of [10] on Einstein
hypersurfaces, the non-existence of a certain type of hypersurface in the complex projective space,
and some results concerning the curvature of complex curves. Luc Vrancken in [11] classify the
affine immersions with parallel second fundamental form in Rn+n(n+1)/2, obtaining amongst others
the generalized Veronese immersions.

Some of these results are restricte to affine immersions of co-dimension one or two. In our work
we extend some fundamental equations and results to affine immersion of general co-dimension p.
We were motivated by the fact that these important fundamental equations are obtained in affine
immersion of co-dimention one, two, three or four. That mean it is possible to get these fundemantal
equations in affine immersion of any co-dimension p.

We organize the work as follows: At first, we give the definition of affine immersion, state the
Weingarten formula and some of the fundamental equations which are relavant to affine immersion.
Next, we use the definition of curvature tensor to obtain the relationship between the curvature
tensor of the connection D in Rn+p and the induced connection ∇ in a manifold Mn when Mn is
immersed in Rn+p and derive the equations of Guass and codazi. Lastly, we extend some results in
[5] and [1] to immersion of co-dimension p. We also give a neccessary conditions for two torsion-free
affine connections to be projectively equivalent.

2 Preliminaries

In this section we introduce the notion of affine immersion of general co-dimension and obtain some
important fundamental equations.

Let (M,∇) and (M̄, ∇̄) be differentiable manifolds with dimension n and n+ p respectively. Here
we assume without mentioning frequently that the given affine connections have zero torsion. We
give the following definition;
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Definition 2.1 ([1]). . A mapping f : (M,∇) → (M̄, ∇̄) is called an affine immersion if there is
a p−dimensional differentiable distribution Nx along f : x ∈ M → Nx, a subspace of Tf(x)M̄ such
that

Tf(x)M̄ = f∗(TxM)⊕Nx (2.1)

and that

(∇̄Xf∗Y )x = (f∗(∇XY ))x + (h(X,Y ))x (2.2)

for all tangent vector fields X,Y in M , h(X,Y ) ∈ Nx, at point x ∈ M where ∇, ∇̄ are the affine
connections in M , M̄ respectively.

The distribution Nx has dimension p and is call the normal or transversal space and h(X,Y ) is call
the second fundamental form. Since Nx is a differentiable distribution, each point x ∈ M has a
system of p differentiable vector fields ξ1, ξ2, ..., ξp called the lacal basis that span Nx.

Now, we let M̄ = Rn+p, D be the standard flat affine connection in Rm+p, M be an n−dimensional
manifold and f an immersion of M into Rn+p. Then from equation (2.2), at each point x ∈ Mn we
have;

DXf∗Y = f∗(∇XY ) + Span{ξ1, ξ2, ..., ξp} (2.3)

This can be written as

DXf∗Y = f∗(∇XY ) + h1(X,Y )ξ1 + h2(X,Y )ξ2 + ...+ hp(X,Y )ξp. (2.4)

From this equation, ∇ is called the induced torsion free affine connection on M , while hi, i =
1, 2, ..., p are symmetric tensors called the second fundamental forms. By Weingarten formula, we
have the following equations;

DXξ1 = −S1X + τ1
1 (X)ξ1 + τ2

1 (X)ξ2 + ...+ τp
1 (X)ξp

DXξ2 = −S2X + τ1
2 (X)ξ1 + τ2

2 (X)ξ2 + ...+ τp
2 (X)ξp

...

DXξp = −SpX + τ1
p (X)ξ1 + τ2

p (X)ξ2 + ...+ τp
p (X)ξp (2.5)

Here, X,Y are tangent vectors in M, Si and τ i
j , i, j = 1, 2..., p are called the shape operators and

the normal connection forms respectively.

If we consider an n−dimensional manifold M together with an immersion f : Mn → Rn+1. We call
Mn a hypersurface and f is the hypersurface immersion. For each point x ∈ Mn we choose a local
field of transversal vector ξ : x ∈ U ↪→ ξx, where U is neighborhood of x. In this case it means that

Tf(x)R
n+1 = f∗(∇x(M

n)) + Span(ξx)

where Span(ξx) is the 1−dimensional subspace spanned by ξx. In this work we are interested in
the geometry of affine immersion of general co-dimension.

Next, we obtain the relationship between the curvature tensor of the connection D in Rn+p and the
induced connection ∇ in M .

Proposition 2.1. Let (R,D) be the standard n+p−dimensional affine space, (M.∇) be an n−dimen-
sional manifold and f an immersion of M into R. If RD and R are the curvature tensors of D and
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∇ respectively. Then we have that

RD(X,Y )Z = R(X,Y )Z +

p∑
i=1

hi(X,∇Y Z)ξi +

p∑
i=1

Xhi(Y,Z)ξi

−
p∑

i=1

hi(Y,Z)SiX +

p∑
i=1

hi(Y,Z)

p∑
j=1

τ j
i (X)ξj −

p∑
i=1

hi(Y,∇XZ)ξi

−
p∑

i=1

Y hi(X,Z)ξi +

p∑
i=1

hi(X,Z)SiY −
p∑

i=1

hi(X,Z)

p∑
j=1

τ j
i (Y )ξj

−
p∑

i=1

hi([X,Y ], Z)ξi, (2.6)

and

RD(X,Y )ξi = −∇XSiY −
p∑

j=1

hj(X,SiY )ξj +

p∑
j=1

Xτ j
i (Y )ξj −

p∑
j=1

τ j
i (Y )SjX

+

p∑
j=1

(τ j
i (Y )

p∑
i=1

τ i
j (X)ξi) +∇Y SiX +

p∑
j=1

hj(Y, SiX)ξj −
p∑

j=1

Y τ j
i (X)ξj +

p∑
j=1

τ j
i (X)SjY

−
p∑

j=1

(τ j
i (X)

p∑
i=1

τ i
j (Y )ξi) + Si([X,Y ])−

p∑
j=1

τ j
i ([X,Y ])ξj ] (2.7)

where X,Y, Z are vector fields in M , D, ∇ are the affine connections in R M respectively.

Proof. Let {h1, h2, ..., hp} be the second fundamental forms, {ξ1, ξ2, ..., ξp} be transversal vectors
that span the transversal distribution Nx, {S1, S2, ..., S1} are the shape operators and τ i

j , i, j =
1, 2..., p are the normal connection forms for the affine immersion f . Then We have

DXDY Z = DX(∇Y Z +

p∑
i=1

hi(Y,Z)ξi)

= ∇X∇Y Z +

p∑
i=1

hi(X,∇Y Z)ξi +

p∑
i=1

Xhi(Y, Z)ξi +

p∑
i=1

hi(Y,Z)DXξi

= ∇X∇Y Z +

p∑
i=1

hi(X,∇Y Z)ξi +

p∑
i=1

Xhi(Y, Z)ξi

−
p∑

i=1

hi(Y, Z)SiX +

p∑
i=1

(hi(Y,Z)

p∑
j=1

τ j
i (X)ξj). (2.8)

Similarly,

DY DXZ = ∇Y ∇XZ +

p∑
i=1

hi(Y,∇XZ)ξi +

p∑
i=1

Y hi(X,Z)ξi

−
p∑

i=1

hi(X,Z)SiY +

p∑
i=1

(hi(X,Z)

p∑
j=1

τ j
i (Y )ξj) (2.9)

and

D[X,Y ]Z = ∇[X,Y ]Z +

p∑
i=1

hi([X,Y ], Z)ξi (2.10)
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and so by combining equations (2.8) and (2.9) and (2.10) the curvature tensors are related by the
equation

RD(X,Y )Z = R(X,Y )Z +

p∑
i=1

hi(X,∇Y Z)ξi +

p∑
i=1

Xhi(Y,Z)ξi

−
p∑

i=1

hi(Y,Z)SiX +

p∑
i=1

hi(Y,Z)

p∑
j=1

τ j
i (X)ξj −

p∑
i=1

hi(Y,∇XZ)ξi

−
p∑

i=1

Y hi(X,Z)ξi +

p∑
i=1

hi(X,Z)SiY −
p∑

i=1

hi(X,Z)

p∑
j=1

τ j
i (Y )ξj

−
p∑

i=1

hi([X,Y ], Z)ξi, (2.11)

. Again,

DXDY ξi = DX(−SiY +

p∑
j=1

τ j
i (Y )ξj)

= −∇XSiY −
p∑

j=1

hj(X,SiY )ξj +

p∑
j=1

Xτ j
i (Y )ξj −

p∑
j=1

τ j
i (Y )SjX

+

p∑
j=1

(τ j
i (Y )

p∑
i=1

τ i
j (X)ξi), (2.12)

DY DXξi = DY (−SiX +

p∑
j=1

τ j
i (X)ξj)

= −∇Y SiX −
p∑

j=1

hj(Y, SiX)ξj +

p∑
j=1

Y τ j
i (X)ξj −

p∑
j=1

τ j
i (X)SjY

+

p∑
j=1

(τ j
i (X)

p∑
i=1

τ i
j (Y )ξi) (2.13)

and

D[X,Y ]ξi = −Si([X,Y ]) +

p∑
j=1

τ j
i ([X,Y ])ξj (2.14)

and by equations (2.12), (2.13) and (2.14) we have

RD(X,Y )ξi = −∇XSiY −
p∑

j=1

hj(X,SiY )ξj +

p∑
j=1

Xτ j
i (Y )ξj −

p∑
j=1

τ j
i (Y )SjX

+

p∑
j=1

(τ j
i (Y )

p∑
i=1

τ i
j (X)ξi)− [−∇Y SiX −

p∑
j=1

hj(Y, SiX)ξj +

p∑
j=1

Y τ j
i (X)ξj −

p∑
j=1

τ j
i (X)SjY

+

p∑
j=1

(τ j
i (X)

p∑
i=1

τ i
j (Y )ξi)]− [−Si([X,Y ]) +

p∑
j=1

τ j
i ([X,Y ])ξj ] (2.15)

and so equtions (2.15) and (2.11) give the results.
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Proposition (2.1) gives the following fundamental equations.

Corollary 2.1. Let f : (Mn,∇) → (Rn+p, D) be an affine immersion. Then the fundamental
equations in affine immersion of general co-dimension are as follows:

a R(X,Y )Z =
∑p

i=1 h
i(Y, Z)SiX −

∑p
i=1 h

i(X,Z)SiY

b
∑p

i=1[(∇Xhi)(Y,Z) + hi(Y, Z)
∑p

j=1 τ
j
i (X)] =

∑p
i=1[(∇Y hi)(X,Z) + hi(X,Z)

∑p
j=1 τ

j
i (Y )]

c (∇XSi)Y −
∑p

j=1 τ
j
i (X)SjY = (∇Y Si)X −

∑p
j=1 τ

j
i (Y )SjX

d
∑p

j=1 Xτ j
i (Y )ξj−

∑p
j=1 Y τ j

i (X)ξj−
∑p

j=1 τ
j
i ([X,Y ])ξj =

∑p
j=1 h

j
i (X,SiY )−

∑p
j=1 h

j
i (Y, SiX)

Proof. Since the connection D in Rn+p is flat, that means RD = 0. Term by term comparism in
equations (2.11) and (2.15) give the desired results

Proposition 2.2. Suppose that ξ̄1, ξ̄2, ..., ξ̄p are other transversal vector fields that span another
transversal plane N̄x such that ξ̄i = λi1ξ1 + λi2ξ2 + ... + λipξp + f∗(Zi) for all i = 1, 2, ..., p where
Zi are tangent vectors in M, and λij are scalar functions. Then for all tangent vectors X,Y in M,
the following equations hold:

1. ∇̄XY = ∇XY − [h]tA−1[Z]

2. [h̄] = A−t[h].

3. pτ̄ i
i (X) =

∑p
j=1 ρ(X)ij +

∑p
j=1 τ

j
j (X) i = 1, 2, ..., p

where A =


λ11 λ12 . . . λ1p

λ21 λ22 . . . λ2p

...
λp1 λp2 . . . λpp

 such that ∥A∥ ̸= 0. [h] =


ξ1
ξ2
...
ξp

 , [h̄] =


ξ̄1
ξ̄2
...
ξ̄p

 , [Z] =


f∗(Z1)
f∗(Z2)

...
f∗(Zp)

 , At is the transpose of A, and A−t is the inverse of the transpose of A.

Proof. without lost of generality, we omit f∗. Let A = At denote the transpose of the matrix A.
We know from equation (2.5) that

DXY = ∇XY + h1(X,Y )ξ1 + h2(X,Y )ξ2 + ...+ hp(X,Y )ξp (2.16)

where ∇ is the induced connection with respect to the transversal vectors {ξ1, ξ2, ..., ξp}. Again,

DXY = ∇̄XY + h̄1(X,Y )ξ̄1 + h̄2(X,Y )ξ̄2 + ...+ h̄p(X,Y )ξ̄p

= ∇̄XY + h̄1(X,Y )[λ11ξ1 + ...+ λ1pξp + Z1] + h̄2(X,Y )[λ21ξ1 + ...+ λ2pξ2 + Z2]

+ ...+ h̄p(X,Y )[λp1ξ1 + ...+ λppξp + Zp]

= ∇̄XY + [h̄1(X,Y )λ11 + h̄2(X,Y )λ21 + ...+ h̄p(X,Y )λp1]ξ1

+ [h̄1(X,Y )λ12 + h̄2(X,Y )λ22 + ...+ h̄p(X,Y )λp2]ξ2

+ ...+ [h̄1(X,Y )λ1p + h̄2(X,Y )λ2p + ...+ hpλpp]ξp

+ h̄1(X,Y )Z1 + h̄2(X,Y )Z2 + ...+ h̄p(X,Y )Zp (2.17)

and so we have that
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DXY = ∇̄XY + [h̄1(X,Y )λ11 + h̄2(X,Y )λ21 + ...+ h̄p(X,Y )λp1]ξ1

+[h̄1(X,Y )λ12 + h̄2(X,Y )λ22 + ...+ h̄p(X,Y )λp2]ξ2

+...+ [h̄1(X,Y )λ1p + h̄2(X,Y )λ2p + ...+ hpλpp]ξp

+h̄1(X,Y )Z1 + h̄2(X,Y )Z2 + ...+ h̄p(X,Y )Zp (2.18)

Where ∇̄ is the induced connection with respect to the transversal vectors {ξ̄1, ξ̄2, ...ξ̄p}. If we equate
(2.16) to (2.18) and compare coefficience, we have in matrix form


h1

h2

...
hp

 =


λ11 λ21 . . . λp1

λ12 λ22 . . . λp2

...
λ1p λ2p . . . λpp




h̄1

h̄2

...
h̄p

 .

This is the same as [h] = At[h̄] and so [h̄] = A−t[h]. We also have the equation ∇̄XY = ∇XY −

(
h̄1 h̄2 . . . h̄p

)


Z1

Z2

...
Zp

 . We can write this equation as ∇̄XY = ∇XY − [h̄]t[Z] and so we

have ∇̄XY = ∇XY − [h]tA−1[Z] as required.

Similarly

DX ξ̄i = −S̄i(X) +

p∑
j=1

τ̄ j
i (X)ξ̄j

= −S̄i(X) +

p∑
j=1

τ̄ j
i (X)[λj1ξ1 + λj2ξ2 + ...λjpξp + Zj ]

= −S̄i(X) +

p∑
j=1

[τ̄ j
i (X)λj1ξ1 + τ̄ j

i (X)λj2ξ2 + ...+ τ̄ j
i (X)λjpξp + τ̄ j

i (X)Zj ]

(2.19)

Again, we can define

DX ξ̄i = DX [λi1ξ1 + λi2ξ2 + ...λipξp + Zi]

= Xλi1ξ1 +Xλi2ξ2 + ...+Xλipξp

+ λi1DXξ1 + λi2DXξ2 + ...λipDXξp +DXZi

= Xλi1ξ1 +Xλi2ξ2 + ...+Xλipξp

+ λi1[−S1(X) +

p∑
j=1

τ j
1 (X)ξj ] + λi2[−S2(X) +

p∑
j=1

τ j
2 (X)ξj ]

+ ...λip[−Sp(X) +

p∑
j=1

τ j
p (X)ξj ] +∇XZi +

p∑
j=1

hj(X,Zi)ξj

7
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so that

DX ξ̄i = −[λi1S1(X) + λi2S2(X) + ...+ λipSp(X)] +∇XZi

+Xλi1ξ1 +Xλi2ξ2 + ...+Xλipξp + λi1

p∑
j=1

τ j
1 (X)ξj

+ λi2

p∑
j=1

τ j
2 (X)ξj + ...+ λip

p∑
j=1

τ j
p (X)ξj +

p∑
j=1

hj(X,Zi)ξj . (2.20)

If we equate (2.19) to (2.20) and compare coefficience, we obtain the following system of equations:

τ̄1
i (X)λ11 + τ̄2

i (X)λ21 + ...+ τ̄p
i (X)λp1 = Xλi1 + λi1τ

1
1 (X) + λi2τ

1
2 (X)

+...+ λipτ
1
p (X) + h1(X,Zi)

τ̄1
i (X)λ12 + τ̄2

i (X)λ22 + ...+ τ̄p
i (X)λp2 = Xλi2 + λi1τ

2
1 (X) + λi2τ

2
2 (X)

+...+ λipτ
2
p (X) + h2(X,Zi)

τ̄1
i (X)λ1p + τ̄2

i (X)λ2p + ...+ τ̄p
i (X)λpp = Xλip + λi1τ

p
1 (X) + λi2τ

p
2 (X)

+...+ λipτ
p
p (X) + hp(X,Zi).

Finally, for each i = 1, 2, ..., p, we have

pτ̄ i
i (X) =

p∑
j=1

ρ(X)ij +

p∑
j=1

τ j
j (X)

ρij = dlogλij

Next, we modify one of the important theorems in centroaffine immersion of co-dimension one, of
[5] to a general co-dimension p

Proposition 2.3. Let f : (Mn,∇) → M̃m+p, ∇̃) be a non-degenerate affine immersion with
transversal vector fields {ξ1, ξ2, ..., ξp}, second fundamental forms {h1, h2, ..., hp}, transversal connection
forms τ i

j , i, j = 1, 2, ..., p and cubic forms Ci, i = 1, ..., p where (M̃n+p, ∇̃) is a centro-affine

hypersurface of Rn+p+1 with repect to a pont 0. If we define g : M̃m+p ⊂ Rn+p+1 → Rn+p+1 :
x 7→ λ(x)x with λ > 0 in such a way that g(M̃m+p) ⊂ Rn+p not passing through 0. Then the
following equations are satisfied;

i ∇̄XY = ∇XY + ρ(X)Y + ρ(Y )X

ii h̄i(X,Y ) = hi(X,Y ) i = 1, ..., p

iii h̃ =
∑p

i=1 h̄
i(X,Y )ρ(ξi)

iv
∑p

j=1 τ̄
j
i (X) =

∑p
j=1 τ

j
i (X) + ρ(X)

v S̄i(X) = Si(X)− ρ(ξi)X i = 1, ..., p

for all i.j = 1, ..., p

Proof. In this case our considersion is local hence, we assume Mn ⊂ M̃n+p and have the following
immersion

i (Mn,∇) ↪→ (M̃n+p, ∇̃) with induced connection ∇, second fundamental forms hi, shape
operators Si and transversal connection forms τ j

i i, j = 1, 2, ..., p

ii (M̃n+p, ∇̃) ↪→ (Rn+p+1) with second fundamental form h̃ and transversal vectoe −x
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iii g : (Mn, ∇̄) ↪→ (Rn+p, D) with induced connection ∇̄, second fundamental forms h̄i, shape
operators S̄i, transversal vectors ξ̄i = g∗(ξ) and transversal connection forms τ̄ j

i i, j =
1, 2, ..., p

For any vector fields X,Y ∈ TxM
n we have that

g∗(Y ) = DY λx = Y (λ)x+ λY.

and so g is an immersion. Therefore,

DXg∗Y = DX(Y (λ)x+ λY )

= Y (λ)X +X(Y (λ))x+X(λ)Y + λDXY. (2.21)

But from the immersion (Mn,∇) ↪→ (Rn+p, D) we have,

DXY = ∇XY +

p∑
i=1

hi(X,Y )ξi + h̃(X,Y )(−x) (2.22)

and so from equations (2.21) and (2.22) we have that

DXg∗Y = Y (λ)X +X(Y (λ))x+X(λ)Y + λ∇XY

+λ

p∑
i=1

hi(X,Y )ξi + λh̃(X,Y )(−x). (2.23)

Again, from the immersion (Mn, ∇̄) ↪→ (Rn+p, D), we have

DXg∗(Y ) = g∗(∇̄XY ) +

p∑
i=1

h̄i(X,Y )ξ̄i (2.24)

But we know that ξ̄i = g∗(ξi) = ξi(λ)x+ λξi and so the equation (2.24) becomes

DXg∗(Y ) = λ∇̄XY ) +X(Y (λ))x+
∑p

i=1 h̄
i(X,Y )ξi(λ)x

+
∑p

i=1 h̄
i(X,Y )λξi (2.25)

and so by comparing coefficients in equations (2.23) and (2.25) we obtain the equations.

∇̄XY = ∇XY +
1

λ
X(λ)Y +

1

λ
Y (λ)X, (2.26)

h̄i(X,Y ) = hi(X,Y ), −λh̃(X,Y ) = −
p∑

i=1

h̄i(X,Y )
1

λ
ξi(λ). (2.27)

We denote 1
λ
X(λ), 1

λ
Y (λ) and 1

λ
ξi(λ) by ρ(X), ρ(Y ) and ρ(ξi) respectively where ρ = d log λ and

we have

∇̄XY = ∇XY + ρ(X)Y + ρ(Y )X, h̄i(X,Y ) = hi(X,Y ),

h̃(X,Y ) =

p∑
i=1

h̄i(X,Y )ρ(ξi) (2.28)

Similarly,

DXg∗(ξi) = DX(ξi(λ)x+ λξi)

= ξi(λ)X +X(ξi(λ))x+X(λ)ξi + λDXξi. (2.29)

9
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But DXξi = −Si(X) +
∑p

j=1 τ(X)ji ξj and so equation (2.29) becomes

DXg∗(ξi) = ξi(λ)X +X(ξi(λ))x+X(λ)ξi − λSi(X) + λ

p∑
j=1

τ(X)ji ξj . (2.30)

We also have that

DXg∗(ξi) = −g∗(S̄i(X)) +

p∑
j=1

τ̄ j
i (X)g∗(ξj)

= −λS̄i(X)− (S̄i(X))(λ)x+

p∑
j=1

τ̄ j
i (X)λξj +

p∑
j=1

τ̄ j
i (X)ξj(λ)x. (2.31)

We compare coefficients in equations (2.30) and (2.31) and get the following equations;

p∑
j=1

τ̄ j
i (X) =

p∑
j=1

τ j
i (X) + ρ(X) S̄i(X) = Si(X)− ρ(ξi)X (2.32)

where ρ(X) = d log λ.

Next, from corollary (2.1)b, we set

Ci(X,Y, Z) = (∇Xhi)(Y,Z) + hi(Y, Z)

p∑
j=1

τ j
i (X). (2.33)

It is symmetric in all the vector fields X,Y and Z in Mn. We call Ci(X,Y, Z), i = 1, 2, ..., p the
cubic forms of the affine immersion. For a hypersurface immersion, the cubic form is said to be
divisible by the second fundamental form h if there exists a one form ρ such that, for all vector
fields X,Y and Z in Mn,

C(X,Y, Z) = ρ(X)h(Y,Z) + ρ(Y )h(Z,X) + ρ(Z)h(X,Y ).

or equivalently C(X,Y, Z) = 3ρ(X)h(X,X) for all X ∈ TxM
n. We write h/C.

However, we are considering the immersion of general co-dimension and see how we can extend this
notion to a co-dimension p.

Corollary 2.2. If the cubic form Ci relative to the immersion (Mn,∇) ↪→ (Rn+p, D) is divisible
by hi then the cubic form C̄i relative to the immersion g : (Mn, ∇̄) ↪→ (Rn+p, D) is divisible by hi

and are related by the equation

C̄i(X,Y, Z) = Ci(X,Y, Z)− ρ(X)hi(Y,Z)− ρ(Y )hi(X,Z)

− ρ(Z)hi(Y,X) (2.34)

for all i, j = 1, 2, ..., p

Proof. From eqution (2.33), the cubic form of M̄n in Rn+p is given as

C̄i(X,Y, Z) = (∇̄X h̄i)(Y,Z) + h̄i(Y, Z)

p∑
j=1

τ̄ j
i (X)

for i, j = 1, 2, ..., p that is,

C̄i(X,Y, Z) = Xh̄i(Y,Z)− h̄i(∇̄XY,Z)− h̄i(Y, ∇̄XZ) + h̄i(Y,Z)

p∑
j=1

τ̄ j
i (X)

10
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and so from theorem (2.3)

C̄i(X,Y, Z) = Xhi(Y, Z)− hi(∇XY + ρ(X)Y + ρ(Y )X,Z)

− hi(Y,∇XZ + ρ(X)Z + ρ(Z)X) + hi(Y,Z)[ρ(X) +

p∑
j=1

τ j
i (X)]

= Xhi(Y, Z)− hi(∇XY, Z)− hi(ρ(X)Y,Z)− hi(ρ(Y )X,Z)

− hi(Y,∇XZ)− hi(Y, ρ(X)Z)− hi(Y, ρ(Z)X) + hi(Y,Z)ρ(X) + hi(Y,Z)

p∑
j=1

τ j
i (X)

= Xhi(Y, Z)− hi(∇XY, Z)− ρ(X)hi(Y,Z)− ρ(Y )hi(X,Z)

− hi(Y,∇XZ)− ρ(X)hi(Y,Z)− ρ(Z)hi(Y,X) + hi(Y,Z)ρ(X) + hi(Y,Z)

p∑
j=1

τ j
i (X)

= Xhi(Y, Z)− hi(∇XY,Z)− hi(Y,∇XZ)− ρ(X)hi(Y,Z)− ρ(Y )hi(X,Z)

− ρ(Z)hi(Y,X) + hi(Y,Z)

p∑
j=1

τ j
i (X)

Thus, we finally have that

C̄i(X,Y, Z) = Ci(X,Y, Z)− ρ(X)hi(Y,Z)− ρ(Y )hi(X,Z)

− ρ(Z)hi(Y,X) (2.35)

and if Ci is divisible by hi then C̄i is also divisible by hi for all i = 1, 2, ..., p

This gives us he same result as in co-dimension one.

Definition 2.2 ([1]). Two torsion-free affine connections ∇ and ∇̄ on a differentiable manifold Mn

are said to be projectively equivalent if there is a 1-form ρ such that

∇̄XY = ∇XY + ρ(X)Y + ρ(Y )X

where ρ = dlogλ

From prposition (2.3) it is obvious that the connections ∇ and ∇̄ are projectively equivalent.

The function g : Mn → Rn+p is a projective transformation from Mn to g(Mn) ⊂ Rm+p. If g(Mn)
is a hyperplane for any suitable function λ on Mn, then a curve x̄ on g(Mn) through a point p0 is
the intersection of g(Mn) with a plane containing the line from 0 to p0. See [5] for details.

Theorem 2.3. Let ∇̄ and ∇ be two torsion free and projectively equivalent connections on a
differentiable manifold Mn. Then the curvature tensor R̄ relative to ∇̄ and the curvature tensor R
relative to ∇ are related by the equation

R̄(X,Y, Z) = R(X,Y )Z + [(∇Xρ)Z − ρ(X)ρ(Z)]Y

− [(∇Y ρ)Z − ρ(Y )ρ(Z)]X (2.36)

where dρ = 0

11
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Proof.

∇̄X∇̄Y Z = ∇X(∇Y Z) + ρ(X)∇Y Z + ρ(∇Y Z)X

+Xρ(Y )Z + ρ(Y )∇XZ + ρ(Y )ρ(X)Z + ρ(Y )ρ(Z)X

+Xρ(Z)Y + ρ(Z)∇XY + ρ(Z)ρ(X)Y + ρ(Z)ρ(Y )X (2.37)

∇̄Y ∇̄XZ = ∇Y (∇XZ) + ρ(Y )∇XZ + ρ(∇XZ)Y

+Y ρ(X)Z + ρ(X)∇Y Z + ρ(X)ρ(Y )Z + ρ(X)ρ(Z)Y

+Y ρ(Z)X + ρ(Z)∇Y X + ρ(Z)ρ(Y )X + ρ(Z)ρ(X)Y (2.38)

∇̄[X,Y ]Z = ∇[X,Y ]Z + ρ([X,Y ])Z + ρ(Z)[X,Y ]

= ∇[X,Y ]Z + ρ(∇XY )Z − ρ(∇Y X)Z + ρ(Z)∇XY − ρ(Z)∇Y X

(2.39)

We subtract 2.38 and 2.39 from 2.37, the curvature tensors of the manifolds (M̄, ∇̄) and (M,∇) are
related as follows;

R̄(X,Y, Z) =R(X,Y, Z) + ρ(∇Y Z)X +Xρ(Y )Z +Xρ(Z)Y + ρ(Z)ρ(Y )X

− ρ(∇XZ)Y − Y ρ(X)Z − Y ρ(Z)X − ρ(Z)ρ(X)Y

− ρ(∇XY )Z + ρ(∇Y X)Z (2.40)

and finally we have that

R̄(X,Y, Z) = R(X,Y )Z + [(∇Xρ)Z − ρ(X)ρ(Z)]Y

− [(∇Y ρ)Z − ρ(Y )ρ(Z)]X (2.41)

where dρ = 0

Corollary 2.4. If two affine connections ∇̄ and ∇ are projectively equivalent, then the curvature
tensor R̄ with respect to ∇̄ is the same as the curvature tensor R with respect to ∇ iff [(∇Xρ)Z −
ρ(X)ρ(Z)]Y = [(∇Y ρ)Z − ρ(Y )ρ(Z)]X

3 Conclusions

From our work we can now conclude the following:

a In Proposition (2.2) for a non-degenerate affine immersion, the second fundamental forms hi,
are independent of the choice of the transversal vectors ξi. in the affine immersion of general
co-dimension p

b It is obvious that most of the results in [5] and [1] can be extended to a more general affine
immersion of co-dimension p as shown in proposition (2.3) and corollary (2.2).

c If two affine connections ∇̄ and ∇ are projectively equivalent, then the curvature tensor R̄
with respect to ∇̄ is the same as the curvature tensor R with respect to ∇ if [(∇Xρ)Z −
ρ(X)ρ(Z)]Y = [(∇Y ρ)Z − ρ(Y )ρ(Z)]X
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