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Abstract

In this paper, the test of unit root for bounded AR (2) model with constant term and dependent errors has
been derived. Asymptotic distributions of OLS estimators and f — fype statistics under different tests of
hypotheses have been derived. A simulation study has been established to compare between different

tests of the unit root. Mean squared error (MSE) and Thiel's inequality coefficient (Thiel’s U) have been
considered as criteria of comparison.

Keywords: Bounded AR (2) model; asymptotic distributions; OLS estimators; t —type statistics;, mean
squared error; Thiel's inequality coefficient.

1 Introduction

Many unit root tests have been developed for testing the null hypothesis of a unit root against the alternative
of stationarity, the tests for unit roots in AR (1) processes were first proposed and investigated by Dickey
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and Fuller [1,2] but these unit root tests are proposed to unbounded time series in case of independent error
terms.

Cavaliere [3] tested the presence of unknown boundaries which constrain the sample path to lie within a
closed interval that is in the framework of integrated processes of AR (1) model with a unit root or random
walk model (with and without linear trend) and in (2002) he introduced the logged nominal exchange rates

{)/t} that change in time accordingly to a first-order integrated process, / (1) within the framework of

non-managed flexible exchange rates. In (2005), Cavaliere [4] developed an asymptotic theory for integrated
and near-integrated time series whose range is constrained in some ways. Such a framework arises when
integration and cointegration analysis are applied to persistent series which are bounded either by
construction or because they are subject to control.

Cavaliere and Xu [5] defined bounded process as time series X, with (fixed) bounds at b, b; b<b ,is a

stochastic process satisfying x, €[ b,b] forall «.

Carrion and Gadea (2013) showed that the use of generalized least squares (GLS) detrending procedures
leads to important empirical power gains compared to ordinary least squares (OLS) detrending method when
testing the null hypothesis of unit root for bounded processes. In (2015), they discussed the unit root testing
when the range of the time series is bounded considering the presence of multiple structural breaks. But they
all concentrated on the model of bounded AR (1) with constant or without constant under various
assumptions for the error terms, and in this paper the concentration will be on the bounded AR (2) with
constant model in case of dependent errors.

2 Test of Unit Root for Bounded AR (2) Model with constant Term in
Case of Dependent Errors

The bounded second order autoregressive AR (2) model takes the form:

yv,=a+ py,  tp,y,.,tu,, t=1,...,T, Q)

where ), is bounded time series with fixed bounds with lower bound at b and upper bound at b,
v, E[Q,E] , and b=cT"’[1-¢,]", b=¢c T’ [1-¢,]" and 7T is the sample size,
c,ceR/{0}and c<c , ¢={£0.1,£0.2,...,£09}  y,=y,=0, u, are dependent

error terms which achieved Beveridge-Nelson Decomposition, 0 andp2 are the autoregressive
coefficients and & is the constant term.

2.1 Asymptotic distributions of OLS estimators under different tests of hypothesis
Concepts of relative magnitude or order of magnitude are useful in investigating limiting behavior of random

variables, where if 4 (x) and g (x) are two real functions that have a common domain D < R, and if the
following relationship is exists for any positive constant k (k > 0)
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im |2 <k | xe(D-x,)
x —x,l8 &
Where,  h(x) =0 (g (x)). @)
Schatzman [6]
B C * * *
If A:{D E:| an M XN matrix with 7 =7 ank(A) where B is ¥ XV and invertible

then the generalized inverse G for a given singular matrix A can be obtained as follows:

B 0
G= 0 0 3)

And if an equation represented as:

Ax=h,x €eR

Where, X is a vector or a matrix of unknown elements, h is vector or a matrix that has the same order as

the product of Ax . So, to obtain the forms of unknown elements of X the following equation is need to
be used:

x=Gh+(I-GA)z, zeR (4

Where [ is an identity matrix, Z is a vector or a matrix of real numbers and G is the generalized

inverse of the matrix A that satisfied 4 G4 = A . Sawyer [7]

If Y, is apure random walk without drift as V, =), +U,, where Vy=)_ = 0 , U, are dependent

error terms, and assume that U , is defined as follows:

u,=gu,_ +e =y (L)e=X""_ v, e._,, ¢1\<1 t=1,2,...,T (5)

Where:

E(e,)=0 for all ¢

E(e,es>={"2 o= (6)

0 if t#s

iy, <

Then the following relationship exists:
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Yo o u=y(OHX_ e +n-n, ,t=1,2,..,T (7)
y(D=27,v,;
=20 d; €
@y == (W W Tt )= X|a)] <o
Mo=—W ¥, +ys+.. Je, —W, +ys+y, + .. )e,
-ty tys+. e+

By defining the following quantities:

Vi =E (“,“t_,,-)=<722f:ol//s Vsej » J=0,1,2,...
A= 0% v, =0y () ®)

y,=u,*tu,+...+u, ,t=1,2,...,T

Then the following results are obtained:

DT X uu,_,—L>y, ,j=0,1,2,...
DT XLy u, =AW D] -7

_ )]
NT Py, L AW () dr
DT ELy L AW () dr
Where, W; (7) is a Regulated Brownian Motion, when 7 =1, then:
2 u,— > oy (W ()= S (1) (10)

By using equation (2) the results for orders of convergence of estimators in these equations will be as
follows:

DT =0, (T)
2) X u,=0 (T '?)
3)Zf21u,uh/:0p(T)
Xy, u, =0 ,(T)
5)ZiL ., =0, %)

6)217.:1.)/1271 :OIJ(T 2)
Amer [8]

(I
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The asymptotic distributions of OLS estimators &, O, and > for bounded AR (2) model that
represented by equation (1) for testing the null hypothesis HOZCX:O, £ =1,p2 =0 , (ie.

p1|<1, p2|<1 , (e

Y,= Y, t U, ) against the alternative hypothesis H, :a#0,

YV, =0+0 Y, 4t P, Y, TU,) will be derived as follows:

Lemma (1): If ); is a pure random walk without drift as V, =), +U,, where V,=)_ = 0,u ;
are dependent error terms that achieved the Beveridge-Nelson Decomposition as in equation (7) then as
T — o© the following results are obtained:

DT ST,y u, — L A E M =700
DT Yy, s AW (r)ar
T Yy, s A W () dr

4HT - thzlyz—lyt—z L)ZZEJ [ng (r)]zdr

(12)

Where, 7, =0 "X,y 0,1 =0 2 W W, ad A=0c Xy ;=0 y(l).

Proof:

Part (1)

From the successive substituting of }; then:

Yia=)Via Uy (13)
So,
T_l Z‘:lyt72ut =T - szlytflut _T_l g:lutflut (14)

By using equation (9) then:

DTSy, =LA OF -7} (15)

-1 57T d
2)T thl U U, —>n
Then, by substituting from equations (15 ) in (14) it can be concluded that:

T Xy u =3 { WO =75 = 7
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Part (2)

From equation (13);

-3/2 5T _ -3/2 T -3/2 T
T Ztzlyt—2_T Zt:lyt—l_T zt:lut—l (16)
From equation (11) the order of convergence of ZtT:I u, , =0,(T 1/2) then:

Ty, —0 (17)

By using equation (9) it can be concluded that:
-3/2 §°T d ly37 ¢
T3y~ AW S (r)dr (18)
Then, by substituting from equations (17 & 18) in (16) it can be concluded that:
To2X y, = 2w mydr , (y,=0)

Part (3)

From equation (13);
T Zr=1 yt272 =T Z/r=1 ytzfl -2 Zr=1 Vit +T 2 g:l“il 19

. T 2 2
From equation (11) the order of convergence of > Vi = (0] P (T ) and the order of convergence of

YT _u? | =0,(T) then:

nHr -? Zoyoau, — 0 (20)
2T YT _ur —%>0
By using equation (9) then:
Ty =t AT S ()1 dr (21)
Then, by substituting from equations (20 & 21) in (19), it can be concluded that:
-2 5T 2 d 2 (1 c 2
TOX yi,— > A LW (n)dr . (y,=0)
Part (4)
From equation (13);
r 722{:1)’:-1)’”2:]1 722?:1)’3-1_]1 722{:1)’:-1“:-1 (22)
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Then, by substituting from equations (20 (1) & 21) in (22) it can be concluded that:

T2l v, v, 2 AR WS (r)]? dr

Lemma (2): For model (1) and under the test HO :a=0, ,0121, P> =0, then the asymptotic

distributions of 7> @ , T(p, —1) and T p, will be as follows:

HT'"*éa

. (221 W (M1 drl [ WEQ)] ~[ATN IS (] dr IEA 22 IPE D] = 73]

2L (1 dr = AL I ()] drf
DT (1)t AL @ dr AW D]+ {4 UAC Y,
2 () dr— \ AL [ ) |
3T p, %23 , z;€cAT or E\/T

Proof:
Model (1) can be rewritten in matrix form as follows:

Y =X f +u

Where:
a 1 Yo Yo W U,
u
P S T R )
0 : : : :
2 1 Yror Vroa Yr Ur

The OLS Estimators of a ) ﬁl ) ,bz are:
B=(XX)'X'Y

By using equation (23):
f-B=(XX)" X"u

'
Under the null hypothesis that HO ca=0, £ =1, Por= 0 or ﬂ :(0 1 0) then:

(23)
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.
a r ZtT=1 Vi ZtT=1 Vi ZtT=1 u,

Ibl -1|= Zz-:l Yia Z?:l yt2—1 Z?zl YiaVioa Zle Yial, (24)
P> Zf:l Vi Zf:l YisitVioa Zf:l yrzfz ZtT=1 ViU,

From equation (11) the order of convergence of 1", Zthl u, Xy, u,, )3 thl Vi

T T 2 T 2 . 1/2 3/2
(thz yt—z) and Zt:l yt—l(zt:Z yt—Z) will be Op(T)7 Op(T )7 Op(T)s Op(T ) and
0 » (T 2) respectively. Also, from equation (12 (1&4))) and by using equation (2) then the order of

2
convergence of ZLI Y,_4,,and ZtT=1 YV, Y, willbe OP (T )and OP (T )respectively.

Then, the order of convergence of the elements in equation (24) will be as follows:

& OP(T) OI,(TNZ) OI,(T 3/2) -1 Op(Tl/z)
p,-1]=]0,(T**% 0,(T?) 0,(T?) 0,(T)
b 0 ,(T ') 0 ,(T?) 0 ,(T?) 0,(T)

To obtain the asymptotic distributions of the estimators equation (24) will be multiplied by the following
scaling matrix:

T1/2 0 0
v,=|0 T 0
0 0 T

Then equation (24) will be:

v, (B-B)={v: (Xxx)y;'} 'y, x'u

T"a 1 =" Zthlyt—l T2 zf:lyt—z h T tT:Iut
T(p-)|= T Zthlyt—l T zleytz—l T Zthlyt—lyt—Z T ZtT:Iyt—lut (25)
T p, =7 Ztrzlyt—Z T zleyt—lyt—Z T Ztrzlytz—Z T zf:lyt—Zut

Form equation (10), #ZLI u,—4> 2 W; (1) , from equation (9), T Z,T:I y,_u,

T3 tT:I Y,_1 and T th:I yf_l convergence in distribution to %{ A’ [W(l)g ]2 — 7o) s

A J.i) w (r)i dr  and A° H) (W (r)i 1*dr  respectively.  Also, from  equation  (12),
N “3/2 5T 2T 2 2 T

T X yiau, » T7UX Ly, ad TOX 0y, (T 77X 00 0)

convergence in distribution to L{ A7[ Wj W1 =yet—7, » A J.i) W; (r)dr and

A’ H) [Wj (r)]7 dr respectively.

Then,as 7 — oo and by using the above results equation (25) will be as follows:
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X .€R (i.e. vector of order (3x1) of real numbers) (26)

5075 (3x1)

T g 1 AL WE (rydr AL WE (rydr
xg=lim | T(p =1 |, A, = | ALy we (dr 22 [ WS )1 dr A2 [ IWE ()] dr
T p, AL We(rydr 22T IWE ()12 dr 22T WS ()12 dr
AW
and hg =) LAV -7,
L2 WM =70 - 7,

Since the value of the determinant of 4 5 is equal to zero, a generalized inverse for A 5 is need to be

used. There is a generalized inverse G51 of A 5 will obtained by using equation (3) as follows:

2L dr AW Pldr 0
Gy = : 1 UG 1 0
21 () dr— A0 [ () dr

0 0 0)3x3)

Now to obtain the forms of elements of X5 in equation (26), since:

1 0 0 61
G, 4,=10 1 1 a'ndGﬂhs: o,
0 0 0 5,

Where:

AT IS 1 dr A W] = [ATL D (] dr JEAT TS (D) = 73]

5, . - .
AP INIW (] dr - {/H})[W;(r)] dr}
5 JEALIPE @ drllam W1+ ATV D] - )
’ 2NN dr - (AT WG dr
5,=0

Then, by using equation (4) it can be concluded that:
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0, 1 0 0)|(z
x;=|6, |[+31,-|0 1 1|}z
5, 0 0 0)lz

Where zs are real numbers, then the asymptotic distributions of
T'? a , T(ﬁ1 —1) and Tﬁz will be as follows:
I)T 1/2 d d
2100 SO dr ] [AW S =[AT I 5] dr IS (D] = 7, }]
RIS dr = { AT F () dr}2
o AL dr AW D+ LA S (D] - 7}

2)T (p -1 - - 5 -z,
AW dr - {Mg W ()] dr}

(27)

3N p, —4>z,,z,ec~T or T

Corollary (1): If there is another generalized inverse G52 of 4 5 that can be obtained by using equation
(3), it will be as follows:

NP dr 0 =20 [ (r)] dr

Gy, = . ! . . 0 0 0
S RUAGIN {M})[W;(r)] dr} —AL @ dr 0 1 (3x3)
Then, the asymptotic distributions of T 1/2& , T (,2{ —1) and” ,52 will be as follows:
1)T 1/2& d
(AT S dr (AW W] =[AT W £ dr AR D1 = 703 -]
RO dr = L AL () dr )
)T (p,-)—sz, (28)
o 5 o AL VS (M1 drlLAW S D1+ AT S D= 70 h -7
7T P> —Z,

R dr = L AL E () dr )

,Z2,€c~NT or c~T

2.2 Asymptotic distributions of the I=0pe  gtatistics under different tests of
hypothesis
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In addition to the previous tests in (2.1), the tests that based on 7 — fype statistics for the estimators
V=Vt )
p2|<1 (.. Y, =0+0 Y, 4+ P Y, 5 T U,) will be derived as follows:

0?,/31 and ﬁz under the test ]‘]0:(,120, P :1,,02 =0 , (e
H, :a#0, p1|<1 ,

against

Lemma (3): If the variance-covariance matrix of the estimators of model (1) under the null hypothesis

H 0- & =0 > PO =1 s Py = 0 that can be written in matrix form as follows:

Var (f)=8.>(Xx X ) (29)
Such that,
Var(@)  Cov (p.d) Cov (p,.d)
DV ar (f)=| Cov (p.d)  Var(p,) Cov (. 5,)
Cov (p,,a) Cov (p,,p,) Var (p,)
-1
T rT=1y;71 zT=1yz72 (30)
2)(X X )71 = zrzlyz—l zT:1J/z2—1 zT:1J/t—1J/z—2
szlyz—z ZtT:1J/z—1J/z—2 zT:1J/t2—2
3)8;7 =1 @} (T -3)

Then, the asymptotic distributions for # ; ,7, and 7, will be as follows:

Dt, =[T"* (@)][TVar(é&)]"* —4>6,d;"°

2)t5 =T (P~ DT *Var (p)]? —— (5, — z,)d,"”

3)t; =[T pIIT > Var (p,)]? —L>2,d,"? ,z, e T or VT, zy, €T,z €T

AN UAGIR

Where 51 5 52 are defined as in lemma (2), d |, = _ - 5
Jy L Y dr— Ty [ () |

d, = Yo =Y Z3 . d, = Yo 7y
zz(Ig[Wj(r)]z dr — {f})[W;(r)] dr}z) zz(fg[Wj(r)]z dr — {Jg[W;(r)] dr}zj

Proof:

By multiplying equation (29) by ¥/ that defined as in lemma (2),then;
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yoVar (B, =S ' X Xy (31)

So, by substituting from equation (30 (1,2)) in (31) then the variance- covariance matrix will be:

TVar(d) T2 Cov (p,a) T**Cov(p,,d)

T Cov (p,,4) T *Var(p,) T *Cov (p,,p,) |=S,*B, (32)
T2 Cov (py.d) T Cov(p.py) T Var(p,)
Where:
1 7Y v T-32 >y -1
By =T Xy T PXLph T2 E Vi Vis

T2 ZtT:I Yica T Zthl Yici Vi T th:l yt2—2

As T — oo and from the weak law of large number, Bell [9], and from equation (13 (1)) then the

convergence in probability of S 'Tz will be as follows:

St =X (T =3)—">y, (33)

. -3/2 5T -2 ¥ T 2 o
From equations (9 (3,4)), T Z,:I Y,y and T thl Y,_1 convergence in distribution to

A ,[i) w (r)i dr and A° J.i) [W (}’)i ]2 dr respectively. Also, from equations (12 (2,3,4)),
T Zthl Yy and T - ZtT:I y,2_2 ( T Zthl Y._1 Y,_» ) convergence in distribution to
A ,[i) W; (r)dr and A’ J.é [ VV; (r) 17 dr respectively.

Then, as 7 — oo , by using the above results equation (32) will be:

x6=Ag1h6,x66R(M) (34)
Where:

TVar (@) T°*Cov (p,,a) T Cov (p,,a)
x,=lim | T°% Cov (p,,&) T’Var (p,) T?*Cov (p,,p,) |» he=15,

T—>o

T°" Cov (p,,d) T? Cov (p),P,) TzVar(ﬁz)
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L AW de W) dr
7o 7o 7o
Ag = iII)[ij] dr S0 wEePdr S LNIWE () dr
7o 7o 7o
iIL[ij] dr y—IL[W;m]z dr y—IL[W;(r)]z dr

. e . 2
and A ¢ 1s the asymptotic distribution of the matrix S 'T B 3

Since, ‘A 6 ‘ =0 a generalize0d inverse G61 of A ¢ Will obtained by using equation (3) and it will be

ERIUAGIRE Aprende o
CGo="3 1 -2 h e ar = 0
/12Ié[WC,C(V)]Zdl”—{jIE)[VK?(r)]dr} 7o %
0 0 0)3x3)

Now to obtain the forms of elements of X 4 in equation (37), equation (4) will be used, the forms of the
asymptotic  distributions of 1’ Var(& ), T : Var( /31) andT’ Var([)z) , and the asymptotic

distributions for 7 ; ,7 P and ¢ 5, Will be derived as follows:

Since:
1 O 0
G61 A6 =10 1 1
0 O 0
2 - —
ifé[W;‘(r)]zdr —iI;[W;(r)] 0
7o B Yo -
1 A - 1
G()lh() = /12 i ﬂl - ) _7.[%)[VV;(V)] dl" 7 O
2IL[VK"(r)]2dr—{7I;[W;(r)] dr} ’ 0
0 0 O O O

Then, by using equation (4) it can be concluded that:
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2
_ l _
=R dr =W rldr 0
0 0
1 A . 1
Xo=— R NLA G — 0 |+

1 c 2 A p Yo 70

@ dr =< W ()] dr
0 7o
0 0 0

1 0 0 z, Z, Z)
13— 0 1 1 Zy Zy Zys
0 0 0 Zy, Zs, Zay

Where z 'S are real numbers, then the asymptotic distributions of TVar (& ), T *Var ( /31)

and T *Var (,0,) will be as follows:

Ve @yt BRI
J.i) [WQC (r)]2 dr — { J.i) [WQC (}")] dl"}
)T War (p,) —2 o= 273 >0 (35)

lz(ﬂ) [Wj(r)]zdr _ {E) [W;(”)] dr}zj

3T War (p,) —4s _ Ners .0
’1205 07 () dr = { f 07 () dr | j

To achieve the variances in equation (35) to be positive, Z 3, < 0 and it is assumed to be z n€cVT and

Z 33> 0 and it is assumed to be Z5€ T .

The f—1type statistics for the estimators a, ﬁl and ,52 will be obtained as:

Dt =[T " @) Var(&)] "
2)t; =[T (b= DT *Var(p)I"” (36)
3)tp2 =[T [72][T2Var (ﬁz)]_m

Then, by substituting from equation (27) that contains the asymptotic distributions of OLS estimators

A

1/2 o ~
T a,Ti ( £ —1) andT P, and (35) in (36) then the asymptotic distributions for 7; , ¢ Py and ¢ Py
respectively will be:
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D, =[T 2 (@)T Var (@) —4s5,d;"?
2)tﬁ| :[T (pAl_ 1)][T 2Var(p"l)]—l/2 —d_) (52_23)(1;1/2 (37)
3)Zﬁz =[T ﬁz][T *Var (152)]‘1/2 —d—>Z 3d;1/2,

T ot ey e oy con

Corollary (2): If there is another generalized inverse G62 of 4 ¢ that can be obtained by using
equation (3), it will be as follows:

Epmrerd 0 —2Lpmre)dr
1 Yo 7o

Gy, = ; 5 0 0 0
A - A - _
e LA (r)]zdr—{ft[Wc ()] dr} —iIg[W;(r)] dr 0 !
7/0 7/0 7/0 7/0 (3)(3)
Then, the asymptotic distributions for 4 , 5 and ¢ 5, Will be:
Ot, =[T " (@)|[T Var (&)]"* —4>05,d;'"
2)t, =[T (b= DIT *Var(p)]"? —>z,d;"” G38)
3)t, =[T p,1IT *Var (p,)]"? ——>(6;-2,)d; ",
z,ec~NT OI‘C_\/YT,ZBEC_'\/YT,Z”EC_\/YT
Where:

s _ LIPS dr] LA WEW] (AT W (] dr U2 DS (01 = 70} =71 ]
4 2L dr - AL ()] dr |

5 _ALDPEN dr 2w W1+ 1A WE DT = 7ot -1,
5 AW dr = AL () dr

7o I LW () dr /s 2
6 = i : 1 Torme 745 = o i 2 e 2’
R o ar- AL ondrf 2 BrEentar- i on af)

&

,
d. = Yo = Yo 213
&

_;J|fjllﬁr5(?':l]: dr — {jl[H,E(r)] dr}:‘-l
e ot /
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3 Simulation Study

A simulation study is used to obtain MSE and Thiel’s U under the null hypothesis /{,: y,=y, | +u, and

under the alternative hypothesis Ha with constant term will be obtained in case of five samples size T = 30,

50, 100, 200 and 500 for five boundaries value C=—§=0.3,0.5,0.7,0.9 and 1.1 in case of ten values
for the coefficient of dependent errors @, =% 0.5, £ 0.4, 0.3, £ 0.2 and+ 0.1 by 5000 replications

as follows:

OLS estimators of bounded AR (2) with constant model in case of dependent errors which obtained in
lemma (2) that used the generalized inverse G, and in corollary (1) that used the generalized inverse G,

are used to obtain MSE and Thiel’s U and the results can be summarized and discussed for the next five
cases:

Case (1): T=30
Table 1. Alternative hypothesis 77 for all values of of C=—C (T=30)

- ¢1 0.5 04 0.3 0.2 0.1 01 -02 -03 -04 -05

c=—c
Criteria
Gs; 0.3 MSE H, H,
Thiel's U H,
0.5 MSE H, H,
Thiel's U H,
0.7 MSE
Thiel's U
0.9 MSE
Thiel's U
1.1 MSE
Thiel's U
Gs, 0.3 MSE H,
Thiel's U
0.5 MSE H, H,
Thiel's U
0.7 MSE H, Hy
Thiel's U H, H,
0.9 MSE H,
Thiel's U H, H,
1.1 MSE H,
Thiel's U H, H,

It can be notice from Table (1) that G, approve the alternative hypothesis H o for all values of c=—C

except for values of MSE, E=—g=0.3 and 0.5 in case of positive values of ¢1 and Gy, approve the

alternative hypothesis /, for most values of C=—C except for the values of MSE, Thiel’s U and

Z’=—g=0.3 for all values of @, and for the values of MSE, Thiel’s U and Z’z—g=0.5 in case of

negative values of @, .
Case (2): T=50
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Table 2. Alternative hypothesis /7 for all values of Ez—g (T=150)

Z‘——C ¢ 0.5 0.4 0.3 0.2 01 -02 -03 -04 -05
=—C 1
Criteria
Gs; 03 MSE Hy H,
Thiel's U H,
0.5 MSE
Thiel's U
0.7 MSE
Thiel's U
0.9 MSE
Thiel's U
1.1 MSE
Thiel's U
Gs,; 0.3 MSE H, H,
Thiel's U H, H,
0.5 MSE H, H,
Thiel's U H, H,
0.7 MSE H, H,
Thiel's U H, H,
0.9 MSE H,
Thiel's U H, Hy
1.1 MSE H,
Thiel's U

It can be notice from Table (2) that G, approve the alternative hypothesis A for all values of C=—C

except for values of MSE, E=—g= 0.3 in case of positive values of ¢1 and G, approve the alternative

hypothesis /, for most values of C=—C except for the values of MSE, Thiel’s U and C=—C =0.3 in

case of negative values of ¢1 and for the values of Thiel’s U and c=—c=0.5 in case of negative values

of @, .

Case (3): T=100

Table 3. Alternative hypothesis H 4 for all values of C=—C (T=100)

c=—c ¢1 0.5 0.4 03 02 01 -01 -02 -03 -04 -0.5
Criteria
Gs; 0.3 MSE H, H,
Thiel's U H,
0.5 MSE
Thiel's U
0.7 MSE
Thiel's U
0.9 MSE
Thiel's U
1.1 MSE
Thiel's U
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c=-c ¢1 0.5 0.4 03 02 01 -01 -02 -03 -04 -0.5
Criteria
Gs, 03 MSE H, Hy
Thiel's U H, H,
0.5 MSE H, H,
Thiel's U H, Hy
0.7 MSE H,
Thiel's U H, Hy
0.9 MSE H,
Thiel's U H, H,
1.1 MSE H,
Thiel's U

It can be notice from Table 3 that G, approve the alternative hypothesis /7, for all values of C=—C

except for values of MSE, EZ—Q= 0.3in case of ¢ =0.5,0.4 and0.3 and G, approve the alternative

hypothesis /, for most values of C=—C except for the values of MSE, Thiel’s U and E=—g=0.3 in

case of negative values of ¢1 and for the values of Thiel’s U and ¢c=— ¢=0.5 in case of negative values of

.

Case (4): T=200

Table 4. Alternative hypothesis 77 for all values of C=—C (T=200)

c=—c ¢1 0.5 0.4 0.3 02 01 -01 -02 -03 -04 -05
Criteria
Gs,; 0.3 MSE H,
Thiel's U
0.5 MSE
Thiel's U
0.7 MSE
Thiel's U
0.9 MSE
Thiel's U
1.1  MSE
Thiel's U
Gs;, 03 MSE H, H,
Thiel's U H, Hy
0.5 MSE H, H,
Thiel's U H, H,
0.7 MSE H,
Thiel's U H, H,
0.9 MSE H,
Thiel's U
1.1  MSE
Thiel's U
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It can be notice from Table (4) that G5 | approve the alternative hypothesis / for all values of C=—C

and Gsz approve the alternative hypothesis A, for most values of C=—C except for the values of Thiel’s

U and Z‘z—g:0.3 and 0.5 in case of negative values of @, .

Case (5): T =500

It can be notice from Table (5) that G51 approve the alternative hypothesis H 4 for all values of C=—C

and G 4, approve the alternative hypothesis H 4 for most values of C=—C except for the values of

Thiel’s Uand ¢ = — ¢ = 0.3 in case of negative values of @, .

Table 5. Alternative hypothesis H o for all values of C=—C (T=500)

c=—c ¢] 0.5 0.4 03 02 01 -01 -02 -03 -04 -05
Criteria
Gs; 0.3 MSE H,
Thiel's U
0.5 MSE
Thiel's U
0.7 MSE
Thiel's U
0.9 MSE
Thiel's U
1.1 MSE
Thiel's U
Gs, 03 MSE H, H,
Thiel's U H, H,
0.5 MSE H, H,
Thiel's U H, H,
0.7 MSE H,
Thiel's U H, Hy
0.9 MSE H,
Thiel's U
1.1 MSE
Thiel's U

4 Conclusion

The asymptotic distributions of OLS estimators of bounded AR (2) model with constant term in case of
dependent errors under different tests of hypothesis have been derived. Also, the asymptotic distributions of
the f—{fype statistics of OLS estimators have been derived.

The measurement of MSE approve H , more than the measurement of Thiel’s U. Also, the positive values

of ¢1 approve H o more than the negative values of ¢1 .
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The generalized inverse G51 approve Ha more than the generalized inverse G52 in all cases of sample

size T, ¢c=—¢C and ¢1 . Also, for each sample size 7 , C=—C and for generalized inverses
G51 andG52 the values of MSE are decreasing for decreasing of positive values of ¢51 and increasing
for decreasing of negative values of ¢1 , while the values of Thiel’s U are increasing for both decreasing of

positive values of ¢51 and decreasing of negative values of ¢51 under both the null and alternative

hypotheses.
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