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ABSTRACT 
 

Tomato price forecasting in Bihar marketplaces is the subject of a study. The study compares and 
contrasts many time series models. Three models are compared: WT-TDNN (Wavelet Transform 
with TDNN), TDNN (Time-Delay Neural Network), and ARIMA. This study evaluates the efficacy of 
advanced and traditional time series models for forecasting tomato prices in Bihar markets, with a 
focus on ARIMA, Time Delay Neural Networks (TDNN), and Wavelet-TDNN (WT-TDNN). ARIMA 
models were optimized using the Akaike Information Criterion (AIC), identifying (0, 1, 2) and (1, 1, 
1) as optimal configurations, and validated through Wald's test. TDNN models with 2:4s:1l and 
1:6s:1l architectures exhibited robust performance based on RMSE, MAE, and MAPE metrics. 
The WT-TDNN model, which integrates wavelet decomposition with TDNN, demonstrated superior 
predictive accuracy over both ARIMA and standard TDNN models. By employing the Haar filter for 
series decomposition into orthogonal components and applying TDNN to each component, WT-
TDNN effectively captured the complex, non-linear dynamics of agricultural price series. 
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This innovative approach enhances the precision of price forecasting, offering significant 
implications for agricultural economics and machine learning applications. The findings provide 
valuable insights for policymakers, farmers, and market analysts, enabling improved decision-
making and fostering resilience in the agricultural sector. The study highlights WT-TDNN as a 
transformative tool for addressing the challenges of agricultural price prediction. 
 

 
Keywords: TDNN; wavelet analysis; performance measures; RMSE; MAE; MAPE. 
 

1. INTRODUCTION 
 
In the bustling markets of rural and urban 
landscapes, the price of agricultural commodities 
like tomatoes plays a crucial role in shaping the 
lives of farmers, consumers, and policymakers. 
Predicting these prices, however, is no simple 
task. Agricultural price series are as 
unpredictable as the weather that governs their 
production—complex, nonlinear, and often 
chaotic. Farmers, already grappling with 
challenges like market imperfections, speculative 
trading, and globalization, need accurate price 
forecasts to make informed decisions about 
planting, harvesting, and selling their produce. 
 
Historically, statistical models like the 
Autoregressive Integrated Moving Average 
(ARIMA) have been the go-to tools for 
forecasting. These models, while effective for 
linear relationships, struggle to capture the 
intricate dynamics of agricultural price series. 
Recognizing these limitations, researchers began 
exploring nonlinear models such as Self-Exciting 
Threshold Autoregressive (SETAR) and Smooth 
Transition Autoregressive (STAR). These models 
brought improvements but still lacked the 
flexibility and adaptability required for real-world 
agricultural data. 
 
As technology advanced, the focus shifted to 
machine learning (ML) and artificial intelligence 
(AI) models, which offer powerful tools for 
analyzing complex datasets. Among these, Time 
Delay Neural Networks (TDNNs), Long Short-
Term Memory (LSTM) networks, and Gated 
Recurrent Units (GRUs) emerged as 
frontrunners. These models excel at capturing 
long-term dependencies and nonlinear patterns, 
making them ideal for agricultural price 
forecasting. Yet, even these sophisticated tools 
faced challenges when dealing with the 
nonstationary nature of agricultural price series. 
 
This is where decomposition techniques like 
Wavelet Analysis come into play. By breaking 
down a complex price series into simpler 
subseries, Wavelet Analysis provides a clearer 

picture of underlying patterns, enabling neural 
networks to make more accurate predictions. 
The synergy between Wavelet Transforms and 
AI models promises a revolutionary leap in 
forecasting methodologies. 
 
Inspired by this potential, the current study 
embarks on a journey to address the 
complexities of agricultural price forecasting, with 
a specific focus on tomato prices. It aims to 
explore the capabilities of TDNNs and LSTM 
models, both individually and in combination with 
Wavelet Transforms. The objectives of this study 
are to investigate the effectiveness of these 
models and techniques in providing reliable and 
actionable price forecasts. 
 
By delving into the intersection of advanced AI 
techniques and agricultural economics, this 
research aspires to empower farmers, stabilize 
markets, and guide policymakers, ultimately 
contributing to a more resilient agricultural 
ecosystem. 
 

2. MATERIALS AND METHODS 
 

2.1 Data Collection 
 
This study utilized weekly tomato price data from 
the Bihar market, sourced from the National 
Horticultural Research and Development 
Foundation (NHRDF) website, covering January 
2004 to March 2023. The dataset was divided 
into training (980 observations) and testing (12 
weeks) sets to evaluate the effectiveness of 
various time series models. Figs. 1 and 2 
illustrate the non-stationary and non-linear 
behavior of the minimum and maximum price 
series, further supported by descriptive statistics 
(Table 1), which highlight the distribution 
characteristics. 
 

2.2 Time Series Stationarity 
 

Stationarity of the series was assessed using the 
Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) tests. Both tests confirmed that the 
original series were non-stationary, but 
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stationarity was achieved after differencing. 
Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) plots provided 
insights into lag structures, while the Shapiro-

Wilk test confirmed non-normality. The Hurst 
Exponent Statistic indicated anti-persistence, 
suggesting the absence of long memory in the 
series. 

 

 
 

Fig. 1. Time plot for daily tomato minimum price series      
      

 
 

Fig. 2. Time plot for daily tomato maximum price series 
 

Table 1. Descriptive Statistics 
 

Statistics Min Price Series Max Price Series 

No. of Observations 992 992 
Max Value 5114 5069 
Min Value 688 802 
Mean 1884.38 2104.53 
Median 1716 1963.5 
Std. Deviation 846.77 740.19 
Skewness 0.91 0.84 
Kurtosis 0.34 0.41 
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2.3 Model Development 
 
The ARIMA models were developed by 
identifying the best-fit configurations based on 
Akaike Information Criteria (AIC). ARIMA (1, 1, 1) 
and ARIMA (0, 1, 2) were identified as optimal 
models for minimum and maximum price series, 
respectively, with significant parameter 
estimates. 
 
A Time Delay Neural Network (TDNN) was 
applied to predict price series, leveraging logistic 
and identity activation functions. Optimal 
configurations were determined through 
experimentation with varying input nodes and 
hidden layers, trained using the Levenberg-
Marquardt algorithm for fast convergence. 
 

To enhance predictive accuracy, a Wavelet-Time 
Delay Neural Network (Wavelet-TDNN) model 
was implemented. The series were decomposed 
into wavelet components and modeled 
individually. Performance metrics such as Mean 
Absolute Error (MAE) and Root Mean Square 
Error (RMSE) were used to evaluate model 
effectiveness. The Wavelet-TDNN consistently 
demonstrated superior accuracy in both training 
and validation phases, as highlighted in the 
forecasts for minimum and maximum price 
series. 
 
This methodological approach provides a robust 
framework for forecasting price series, combining 
traditional statistical models with advanced 
neural network techniques for enhanced 
predictive performance. 
 

3. RESULTS AND DISCUSSION 
 

To assess the significance of the parameter 
estimates in the ARIMA models, Wald’s z-test 

was employed. The test results are further 
supported by Table 3. which present the point 
forecasts for the ARIMA (1, 1, 1) model for the 
tomato minimum price series and the ARIMA (0, 
1, 2) model for the tomato maximum price series. 
These forecasts are visually depicted in Figs. 3 
and 4 respectively. Table 2 details the results for 
the ARIMA (1, 1, 1) model, showing that the 
predicted values closely follow the actual test set 
values across several weeks, indicating the 
model's accuracy in forecasting the minimum 
price of tomatoes. Similarly it also presents the 
outcomes for the ARIMA (0, 1, 2) model applied 
to the maximum price series, with the forecasted 
values also demonstrating a strong alignment 
with the observed data. These results, illustrated 
in Fig. 3. (a) and 3. (b), highlight the 
effectiveness of the selected ARIMA models in 
capturing the dynamics of tomato price 
fluctuations. 
 

In the class of TDNN models considered in this 
study, it was observed that the models with 
structures 2:8s:1l and 1:6s:1l had the lowest 
performance measures for the minimum and 
maximum price series of tomatoes, respectively. 
The point forecasts up to 12 lags for both series 
are detailed in Table 3, with the best TDNN 
models for each series' point forecasts illustrated 
graphically (Fig. 4 (a) and 4 (b)). 
 

To enhance predictive accuracy, both the 
minimum and maximum tomato price series were 
decomposed using a six-level wavelet transform, 
resulting in seven components (W₁ to W₆ and 
V₆). Each component was modeled using Time 
Delay Neural Networks (TDNN), and the model 
with the lowest Mean Absolute Error (MAE) and 
Root Mean Square Error (RMSE) was identified 
as the best fit. The point forecasts are presented 
in Table 4 and Fig. 5(a) for the minimum 

 

Table 2. Results of ARIMA model for tomato price series 
 

Week Test Set 
(Min Price)  

ARIMA (1,1,1) 
(Min Price) 

Test Set 
(Max Price) 

ARIMA (0, 1, 2) 
(Max Price) 

981 3157 3486 3836 4134 
982 3250 3628 4024 4315 
983 3084 3431 3693 3918 
984 2801 3138 3318 3557 
985 2858 3175 3409 3708 
986 2535 2835 3216 3457 
987 2523 2877 3211 3436 
988 2818 3191 3389 3679 
989 2290 2599 2982 3209 
990 2031 2429 2633 2848 
991 1911 2291 2454 2677 
992 2058 2418 2737 2946 
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Fig. 3a. Fitted ARIMA (1, 1, 1) with tomato minimum price series 
                

 
 

 Fig. 3b. Fitted ARIMA (0, 1, 2) with tomato maximum price series 
 

Table 3. Results of TDNN model for tomato price series 
 

Week Test Set 
(Min price)  

TDNN (2:8s:1l) 
(Min price)  

Test Set 
(Max price) 

TDNN (1:6s:1l) 
(Max price) 

981 3157 3288 3836 3932 
982 3250 3385 4024 4101 
983 3084 3208 3693 3810 
984 2801 2931 3318 3414 
985 2858 2978 3409 3526 
986 2535 2665 3216 3293 
987 2523 2647 3211 3305 
988 2818 2942 3389 3504 
989 2290 2410 2982 3066 
990 2031 2164 2633 2737 
991 1911 2039 2454 2567 
992 2058 2180 2737 2819 

 
price series and Fig. 5(b) for the maximum price 
series. This approach highlights the efficacy of 

the Wavelet-TDNN framework in capturing 
complex price patterns. 



 
 
 
 

Sunidhi and Nidhi; J. Exp. Agric. Int., vol. 47, no. 1, pp. 273-286, 2025; Article no.JEAI.129731 
 
 

 
278 

 

 
 

Fig. 4a. Fitted TDNN (2:8s:1l) with tomato minimum price series 
 

 
 

Fig. 4b. Fitted TDNN (1:6s:1l) with tomato maximum price series 
                              

Table 4. Results of wavelet based TDNN model for tomato price series 
                               

Week Test Set 
(Min Price) 

WT-TDNN 
(Min Price) 

Test Set 
(Max Price) 

WT-TDNN 
(Max  Price) 

981 3157 3181 3836 3841 
982 3250-‘m,  3272 4024 4034 
983 3084 3122 3693 3698 
984 2801 2827 3318 3325 
985 2858 2888 3409 3418 
986 2535 2580 3216 3221 
987 2523 2572 3211 3216 
988 2818 2860 3389 3399 
989 2290 2327 2982 2990 
990 2031 2048 2633 2640 
991 1911 1927 2454 2459 
992 2058 2073 2737 2746 
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Fig. 5a. Fitted wavelet based TDNN for min price series 
 

 
 

Fig. 5b. Fitted wavelet based TDNN for max price series 
 

3.1 Performance Measure in relation to 
Tomato Price Series 

 

Performance measures for both series is 
compared with three different models viz. 
Autoregressive Integrated Moving Average 

(ARIMA), Time Delay Neural Network (TDNN) 
and Wavelet Based Time Delay Neural Network 
(WT-TDNN) considering three different measures 
i.e., RMSE, MAE and MAPE illustrated in Table 5 
and Table 6.  

 
Table 5. Performance measures of model for tomato minimum price series 

 

Series Model Set RMSE MAE MAPE (%) 

Minimum 
Price 
Series 

ARIMA  
(2, 1, 2) 

Training 404.948 391.4475 12.2114 
Validation 656.734 522.6335 12.3609 

TDNN Training 370.309 435.701 8.5604 
Validation 562.9005 528.697 9.7438 

WT-TDNN Training 96.0445 238.051 6.1712 
Validation 149.544 224.785 7.3675 
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Table 6. Performance measures of model for tomato maximum price series 
 

Series Model Set RMSE MAE MAPE (%) 

Maximum 
Price 
Series 

ARIMA 
(1,1,0) 

Training 305.788 318.8195 11.6465 
Validation 373.6925 436.84 11.7908 

TDNN Training 320.8295 375.937 7.9911 
Validation 278.2175 393.6585 9.1701 

WT-TDNN Training 49.5133 40.4010 5.6013 
Validation 62.4449 147.735 6.7988 

 
Bar and line diagram for all points forecasts of 
different model is illustrated in Fig. 6, Fig. 7, Fig. 
8 and Fig. 9. Fig. 10 and Fig. 11 depicts various 

performance measures obtained from different 
models used in analysis of both price series 
respectively. 

 

 
 

Fig. 6. Bar diagram of several point forecasts for tomato minimum price series 
 

 
 

Fig. 7. Line diagram of several point forecasts for tomato minimum price series 
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Fig. 8. Bar diagram of several point forecasts for tomato (max) price series 
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Fig. 9. Line diagram of several point forecasts for tomato maximum price series 
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Fig. 10. Bar diagram of performance measures for tomato minimum price series 
 

 
 

Fig. 11. Bar diagram of performance measures for tomato maximum price series 
 

4. CONCLUSION 
 

By reducing risks and uncertainties, accurate 
agricultural price forecasting is essential for 

assisting farmers, legislators, and government 
organizations in making decisions. Using a 
comparative comparison of time series models, 
such as ARIMA, Time Delay Neural Networks 
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(TDNN), and Wavelet Transformed TDNN (WT-
TDNN), this study forecasts weekly tomato prices 
in Bihar marketplaces.  
 
Differentiating was used to address the price 
series' volatility, skewness, and non-stationarity. 
Wald's test was used to validate the model's 
performance, and ARIMA (1, 1, 1) and ARIMA (0, 
1, 2) were found to be the best models for 
minimum and maximum price series, 
respectively.  
 
The predictive power of the TDNN and WT-
TDNN models was further investigated; the 
results showed that WT-TDNN was the best 
method for identifying the intricate trends in 
tomato pricing. Based on performance 
parameters that repeatedly show WT-TDNN's 
accuracy and robustness in predicting 
agricultural price patterns, the study comes to the 
conclusion that it is superior. 
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