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ABSTRACT 
 

Dragon fruit, a tropical fruit renowned for its unique appearance and nutritional value, has gained 
significant popularity in recent years. The development of an intelligent yield estimation system for 
dragon fruit orchards can have broader implications for the agricultural industry. It can enable data-
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driven decision-making, improve supply chain management, and enhance market analysis. The 
system can also be integrated with existing farm management systems, precision agriculture 
technologies, and decision support systems to provide a comprehensive solution for farmers. The 
developed system has utilized advanced sensors and controllers to accurately count the number of 
fruits, measure their size, and calculate the yield. The detection performance was studied on the 
basis of accuracy, precision, recall, F1 score, detection accuracy and yield estimation accuracy. 
The results obtained at different speeds of operation viz.  2 km/h, 3km/h and 4 km/h with different 
deep learning models viz. SSD, YOLOv2 and YOLOv3. The maximum size detection accuracy 
using SSD, YOLOv2, and YOLOv3 was 94.16 %, 92.69% and 94.74% respectively, observed at 2 
km/h operating speed.  The developed yield estimation system can estimate the yield of dragon fruit 
with an average 93.92 % yield estimation accuracy at 2 km/h operating speed and 70 cm distance 
of camera from the tree using SSD model. 

 

 
Keywords: Yield estimation; image processing; deep learning; dragon fruit. 

 
1. INTRODUCTION 
 
A yield estimate is the first step towards 
precision farming, defined as “the measurement 
of yield in space and time and the graphical sum 
of these measurements” (Pierce et al., 1997). 
Modern horticultural techniques, especially in 
smart farming, use advanced tools like sensors, 
cameras, and AI-based image processing to 
enhance plant monitoring and productivity 
estimation (Behera et al., 2021). These 
innovations reduce labor needs and improve 
agricultural management (FAO et al., 2017; 
Saiz-Rublo et al., 2020). Dragon fruit cultivation 
has particularly benefited from such 
technologies, with AI and computer vision 
automating fruit detection and counting, enabling 
real-time yield estimation (Dayal V. et al., 2018). 
Traditional methods, prone to labor-intensive 
errors, are now replaced by digital image 
analysis, making yield prediction more accurate 
and cost-efficient (Karma et al., 2016; Kumar et 
al., 2016). This system addresses challenges 
like irregular fruit growth and variable sizes, 
supporting better farm management and 
profitability (Wang et al., 2020; Gonzalez et al., 
2017). Image processing and deep learning 
have proven effective in applications like crop 
monitoring and disease detection, offering 
precise yield predictions and enhancing planning 
capabilities (Zhang et al., 2020; Li et al., 2019). 
This integration enables data-driven decisions, 
improves supply chains, and supports market 
analysis. Combining tools such as sensors, 
GPS, and high-resolution imaging, the system 
provides actionable insights while addressing 
challenges like irregular fruit shapes and labor-
intensive counts (Dayal et al., 2018). Leveraging 
technologies like ESP32, AI, GPS modules, and 
Raspberry Pi, it promotes sustainable farming 

and global food security through efficient yield 
estimation (Behera et al., 2021). The sensor-
controlled yield estimation system enhances 
agricultural efficiency by integrating advanced 
technologies like the ESP32 microcontroller, 
camera module, AI, NPU, GPS modem, and 
Raspberry Pi. The ESP32 collects data from 
sensors monitoring environmental conditions, 
while the camera captures crop images analyzed 
by AI for real-time insights (Li et al., 2023; Zhang 
et al., 2022; Huang Huang et al., 2021; Qiu et 
al., 2024). GPS provides precise geolocation, 
enabling mapping of yield variations, and the 
Raspberry Pi aggregates and visualizes this data 
on a user-friendly dashboard. This system allows 
farmers to monitor crop health remotely, make 
informed decisions, and optimize productivity, 
promoting sustainable farming and supporting 
global food security. 
 

2. MATERIALS AND METHODS 
 

The material required was selected carefully and 
with reference to previous researches. This 
research presents a novel approach to intelligent 
yield estimation in dragon fruit orchards. A 
robust image processing system was developed, 
involving data collection, preprocessing, and 
augmentation to improve model performance. 
The single shot detector (SSD) model was 
selected for its efficiency and accuracy in object 
detection. To facilitate deployment on resource-
constrained edge devices, the model was 
quantized. IoT hardware, comprising ESP32 
microcontrollers and GPS modules, was 
integrated to enable real-time data collection and 
transmission. The system was further enhanced 
by a cloud-based API and application, providing 
real-time insights, yield predictions, and anomaly 
detection, ultimately contributing to improved 
agricultural productivity. 
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Fig. 1. Image of dragon fruit in different condition 
 

2.1 Data Collection 
 
This study presents an intelligent yield 
estimation system for dragon fruit orchards using 
image processing and deep learning. A diverse 
dataset of dragon fruit images at various stages 
was curated from google images and 

repositories like kaggle. The dataset, 
encompassing varied lighting, backgrounds, and 
orientations, was used to train a deep learning 
model. The resulting system provides accurate 
yield predictions, helping farmers optimize 
resources, enhance decision-making, and boost 
profitability in dragon fruit cultivation. 

 

 
 

Fig. 2. Data preprocessing of dragon fruit image (Rotation, flipping, scaling, translation, 
shearing, brightness and contrast adjustment, color jitter, noise addition, cropping and 

padding) 
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Fig. 3. Training and testing image anlysis of model 
 

2.2 Data Preprocessing 
 

The collected data underwent a rigorous 
preprocessing phase to enhance its suitability  
for model training. A variety of image 
augmentation techniques were applied to 
increase dataset variability and simulate real-
world scenarios, thereby improving the model's 
generalization capabilities. These techniques 
involved geometric transformations like rotation, 
flipping, scaling, translation, and shearing, as 
well as photometric transformations such as 
brightness and contrast adjustment, color jitter, 
and noise addition. Additionally, data 
augmentation strategies like cropping and 
padding were employed to further diversify the 
dataset. By incorporating these techniques, the 
model was trained to be more robust and 
accurate in detecting fruits under diverse 
conditions.      
 

2.3 Model Training 
 

Model training was the next step involved. A 
comparative analysis of different object detection 
algorithms was conducted to determine the most 
suitable model for detecting and classifying 
fruits. After analyzing algorithms such as YOLO, 
Faster R-CNN, and SSD (single shot detector), 
SSD was selected due to its balance between 
speed and accuracy, making it well-suited for 
real-time fruit detection on edge devices like 
raspberry Pi. The model was trained on the 
preprocessed dataset, using a combination of 
convolutional neural networks (CNNs) to detect 
objects and classify them into predefined 
categories (e.g., raw, ripen or unannotated 
fruits). 

2.4 Model Quantization for Deployment 
 

To make the trained model suitable for 
deployment on low-power devices like raspberry 
Pi, model quantization was applied. This process 
reduced the model's size and complexity, 
converting 32-bit floating point operations to 8-bit 
integers without significantly affecting accuracy. 
Quantization ensured that the model run 
efficiently on the Raspberry Pi, using minimal 
computational resources while still providing 
real-time detection capabilities. 
 

 
 

Fig. 4. Completely assembled hardware of 
the system 

 

2.5 IoT Hardware Development 
 

The IoT hardware component was developed 
using an ESP32 microcontroller and a GPS 
Modem. The ESP32 was selected for its low 
power consumption, built-in Wi-Fi, and Bluetooth 
capabilities, making it ideal for transmitting data 
wirelessly.  The GPS modem was integrated to 
track the location of the fruit plants, enabling 
precise identification and monitoring. The 
hardware collected data, such as the fruit's state 
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and GPS coordinates, and prepared it for 
transmission to the cloud. 
 

2.6 Application Programming Interface 
Development (API) 

 

To facilitate communication between the 
hardware, edge device, and cloud infrastructure, 
an API was developed.  The API enables the 
transmission of real-time data from the raspberry 
Pi and ESP32-based IoT hardware to the cloud. 
This API is designed to handle incoming data 
from the hardware end, such as fruit images, 
state classifications, and GPS coordinates.  The 
API also interacts with the cloud database to 
store and organize the incoming data for further 
analysis and retrieval. 
 

2.7 Cloud Application Development and 
Deployment 

 

The developed cloud application utilized a PHP-
based API to handle and store data collected 
from edge devices like Raspberry Pi or ESP32. 
This data, encompassing plant ID, fruit count, 
and ripeness classification, was uploaded to the 
cloud and stored in a database. The cloud 
application then provided a web interface for 
users to access this data, enabling them to 
monitor fruit ripeness, estimate yields, and make 
informed decisions in agricultural management. 
This integration of edge and cloud computing 
streamlined data collection, storage, and 
analysis, enhancing overall agricultural 
efficiency. 
 

2.8 Data Visualization 
 

Provided real-time insights into the state of fruits, 
the growth phases, and the overall yield 
predictions based on the data collected from the 
IoT hardware. 
 

2.9 Yield Analysis 
 

Used time-series data to predict agricultural 
productivity and detect anomalies in the growth 
and yield of fruits over time. The cloud 
application is hosted on a scalable cloud 
platform, ensuring that it can handle large 
volumes of data and provide real-time analysis 
to the end-users. 
 

2.10 Parameters for the Study of Deep 
Learning Models 

 

To evaluate the performance of deep learning 
models for yield prediction in dragon fruit 
orchards, metrics like F1 score, precision, recall, 

and accuracy are crucial. Precision measures 
the model's ability to correctly identify true 
positives, while recall assesses its capacity to 
identify all actual positive cases. The F1 score, a 
harmonic mean of precision and recall, provides 
a balanced measure of model performance. 
Accuracy, reflecting the overall correctness of 
predictions, is essential for reliable yield 
estimation. By analyzing these metrics, we can 
assess the effectiveness of the deep learning 
model in the developed yield monitoring system 
for accurately predicting dragon fruit yields. 
 
True positives (TP): The number of fruit correctly 
identified by the system as fruit. 
False positives (FP): The number of non-fruit 
incorrectly identified by the system as fruit. 
True negatives (TN): The number of non-fruit 
correctly identified by the system as non-fruit. 
False negatives (FN): The number of fruit 
missed by the system and incorrectly identified 
as non-fruit.  
 
2.10.1 These metrics can be used to 

calculate the following performance 
metrics: 

 
Overall Accuracy: The accuracy is the total 
observation rate of the correctly classified 
observation. It can be calculated using the 
following equation: 
 

Accuracy = 
𝐓𝐏+𝐓𝐍

𝐓𝐏+𝐅𝐏+𝐓𝐍+𝐅𝐍
 

 
Precision: It shows the effectiveness of neural 
networks in the identification of true positive 
labels. The best precision is considered at 1.0; 
whereas the poor precision is at 0.0. It was 
calculated as, 
 

Precision = 
𝐓𝐏

𝐓𝐏+𝐅𝐏
 

 
Recall: It measures how the neural network 
identifies the targets. Its value varies from 0 to 1 
and can be calculated as, 
 

Recall = 
𝐓𝐏

𝐓𝐏+𝐅𝐍
 

 
F1 Score: It measures the harmonic mean of 
precision and recall and gives the accuracy of 
detecting positive labels by neural network. The 
best F1 score is 1.0, the worst is 0. It can be 
calculated as. 
 

F1 Score =  
   𝟐∗(𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐫𝐞𝐜𝐚𝐥𝐥)         

(𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐫𝐞𝐜𝐚𝐥𝐥)
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Fig. 5. The dashboard application window to fruit monitor analysis 
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Detection accuracy It is the measure of how accurately the size of dragon fruit was detected. It is 
calculated as follows: 
 

Detection accuracy (%) = [1- (
𝐒𝐢𝐳𝐞 𝐨𝐟 𝐟𝐫𝐮𝐢𝐭 𝐝𝐞𝐭𝐞𝐜𝐭𝐞𝐝 𝐜𝐦𝟐

𝐀𝐜𝐭𝐮𝐚𝐥 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐟𝐫𝐮𝐢𝐭 𝐜𝐦𝟐
)] 

 
Yield estimating accuracy: The yield was calculated by measuring the size of each dragon fruit. For 
estimation of weight of dragon fruit, initial a relation between size of fruit and its weight was 
developed by physical measurement. This relation was used for calculating weight of detected sized 
dragon fruit by the developed system. The yield estimating accuracy was calculated as: 
 

Yield estimating accuracy (%)=[1- (
𝐂𝐚𝐥𝐮𝐥𝐚𝐭𝐞𝐝  𝐰𝐞𝐢𝐠𝐡𝐭 𝐟𝐫𝐨𝐦 𝐝𝐞𝐜𝐭𝐞𝐝 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐟𝐫𝐮𝐢𝐭

𝐀𝐜𝐭𝐮𝐚𝐥 𝐰𝐞𝐢𝐠𝐡𝐭 𝐨𝐟 𝐟𝐫𝐮𝐢𝐭 𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝
)]×100 

 

3. RESULTS AND DISCUSSION 
 

3.1 Plant Detection Performance of 
Developed Yield Estimation System 
at Different Operating Speeds 

 
An experiment was conducted to assess the 
effectiveness of ArUco markers for plant 
detection at various operating speeds and 
distances. Two 4x4x50 mm markers were used 
to indicate the plant's beginning and end. The 
markers successfully detected plants at speeds 
of 2, 3, and 4 km/hr and distances of 5, 10, and 
15 ft from the crop. (Table 1) summarizes the 
successful detections across different distances. 

 
3.2 Dragon fruit Detection Performance 

of Developed Yield Estimation 
System at Different Operating Speeds 
Using Different Model Architectures 

 
The detection performance in terms of counting 
number of dragon fruits grown on a plant was 
conducted at 2 km/hr, 3 km/hr and 4 km/hr 
operating speed using three deep learning 
model architectures viz. SSD, YOLOv2, and 
YOLOv3. The data obtained from the tests, with 
10 replications, are presented in (Table 2 and 
Fig. 6). 

 
Fig. 6 shows that, the SSD model performed 
best, achieving perfect detection at 2 km/hr as 5 
and maintaining a high detection ability of 4.3 
and 4.2 out of 5 fruits even at 3 km/hr and 4 
km/hr respectively. This consistency 
underscored SSD's reliability for field-based 
applications where both speed and accuracy are 
critical. Conversely, the YOLOv2 model showed 
a considerable drop in accuracy of detection as 
speed increased, with only 3.2 fruits detected at 
2 km/hr and further declines to 2.2 detections at 
4 km/hr. YOLOv3 performed moderately well, 
with 4 detections at 2 km/hr but experienced a 

reduction similar to YOLO at higher speeds. The 
reason for drop in detecting number of fruits with 
increase in operating speed might be due to the 
hardware multithreading capabilities. The model 
chosen can also be another reason where in the 
model input size and the hardware frame 
processing capabilities will cause the detection 
rate to drop due to the higher operating speeds. 
 
From (Table 2 and Fig. 6) it can be can be 
concluded that SSD architecture provided 
comparatively accurate and stable detection 
across different speeds, suggesting it was the 
most suitable for real-time yield estimating 
applications. YOLOv3 performs reasonably well 
at slower speeds but saw a decline in detections 
as speed increased, while YOLOv2 struggled to 
maintain accuracy under higher-speed 
conditions. The results favored SSD for 
scenarios requiring reliable detection over a 
range of operating speeds, making it a robust 
choice for agricultural field applications. This 
might be due to the fact that the yolo architecture 
relies on single CNN for predictions making it 
difficult to handle blurred data which is inevitable 
as the speed increases. This happens if we 
cannot have higher fps processing hardware 
with the increase in operating speeds. 
 

3.3 Dragon Fruit Size Detection 
Performance at Different Operating 
Speeds Using Different Deep 
Learning models 

 

Three deep learning models (SSD, YOLOv2, 
and YOLOv3) were tested for detecting dragon 
fruits at varying speeds (2-4 km/hr) and camera 
distances (50-70 cm). Results showed that 
detection accuracy increased with distance up to 
70 cm, then declined. This trend was consistent 
across all models and speeds, likely due to the 
camera's fixed focus and field of view. The study 
found that detection accuracy decreased with 
increasing operating speed (2-4 km/h) for all
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Fig. 6. Dragon fruit Detection Performance of Developed Yield Estimation System at Different Operating Speeds Using Different Deep Learning 
models 
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Table 1. The distance-wise detection table for the ArUco markers 
 

Sr. No. Marker Type Speed  
(km/hr) 

Distance from Camera  
(Feet) 

Detection 
Status 

1 Start Detection Marker 2 5 Detected 
2 Start Detection Marker 2 10 Detected 
3 Start Detection Marker 2 15 Detected 
4 End Detection Marker 2 5 Detected 
5 End Detection Marker 2 10 Detected 
6 End Detection Marker 2 15 Detected 
7 Start Detection Marker 3 5 Detected 
8 Start Detection Marker 3 10 Detected 
9 Start Detection Marker 3 15 Detected 
10 End Detection Marker 3 5 Detected 
11 End Detection Marker 3 10 Detected 
12 End Detection Marker 3 15 Detected 
13 Start Detection Marker 4 5 Detected 
14 Start Detection Marker 4 10 Detected 
15 Start Detection Marker 4 15 Detected 
16 End Detection Marker 4 5 Detected 
17 End Detection Marker 4 10 Detected 
18 End Detection Marker 4 15 Detected 

 
three deep learning models (SSD, YOLOv2, and 
YOLOv3). YOLOv3 showed the highest 
accuracy (94.74%) at 2 km/h, but SSD 
outperformed YOLOv3 at higher speeds. 
YOLOv2 had the lowest accuracy across all 
speeds. The results highlight the importance of 
selecting a model architecture based on specific 
operational requirements (Table 3 and Fig. 7). 
 

3.4 Performance of Developed System at 
Different Operating Speeds using 
Different Deep Learning Models 

 
The detection performance was studied on the 
basis of accuracy, precision, recall and F1 score. 
The results obtained at different speeds of 
operation viz. 2 km/h, 3km/h and 4 km/h with 
different deep learning models viz. SSD, 
YOLOv2 and YOLOv3 are presented in               
(Table 4). 
 
The data showed in (Table 4) that an accuracy 
at different speeds of operation   ranged from 1 
to 0.8, 0.6 to 0.4 and 0.8 to 0.6 for SSD, 
YOLOv2 and YOLOv3 respectively. Also it can 
be seen that, accuracy decreased with increase 
in speed of operation selected for the study. The 
decreased overall accuracy with an increase in 
speed of operation might be due to less 
opportunity time available for correct detection of 
the fruits that might increase the incorrect 
detection of non fruit (FN). 
 
A precision remained equal (1.0) for all the 
speeds of operation with all the deep learning 
models (Table 4). As the speed of operation had 

not affected FP (Correct Detection of Non   
Fruits) hence, the precision remained almost 
equal. 
 

Recall at different speeds of operation ranged 
from 1 to 0.8, 0.6 to 0.4 and 0.8 to 0.6 for SSD, 
YOLOv2 and YOLOv3 respectively. Similarly, F1 
score at different speeds of operation ranged 
from 1 to 0.88, 0.75 to 0.57 and 0.88 to 0.75 for 
SSD, YOLOv2 and YOLOv3 respectively              
(Table 4). Also it can be seen that, the Recall 
and F1 score decreased with increase in speeds 
of operation selected for the study. Due to less 
opportunity time available for correct detection of 
the fruits that might increase the incorrect 
detection of non fruit (FN) with increase in speed 
of operation. 
 

3.5 Field Performance of Developed 
System  

 

The most accurate detection of number of fruits 
and fruit size detection accuracy along with 
different performance parameters viz. accuracy, 
precision, recall and F1 score are observed at 2 
km/h operating speed and 70 cm distance of 
camera from the tree using SSD model hence, 
The field performance was studied by choosing 
the same operating speed, distance of camera 
from the tree and deep learning model to check 
the yield estimation accuracy. The yield 
estimation accuracy was calculated by 
comparing the actual number of fruits, size and 
the weight of the respective fruit with detected 
number of fruits and detected size and estimated 
weight of the respective fruit. The results 
obtained from three trees with different number 
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Table 2. Dragon fruit detection performance of developed yield estimation system at different operating speeds using different deep learning 
models 

 
Deep learning 
model  

Operating 
Speed, km/h 

Detected number of fruits out of 5 fruits 

  Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Test-7 Test-8 Test-9 Test-10 Average 

SSD 2 5 5 5 5 5 5 5 5 5 5 5 
SSD 3 5 4 4 4 4 5 4 4 5 4 4.3 
SSD 4 4 4 4 5 4 4 4 5 4 4 4.2 
YOLOv2 2 4 3 3 4 3 3 3 3 3 3 3.2 
YOLOv2 3 3 3 4 3 3 3 3 3 3 3 3.1 
YOLOv2 4 3 2 3 2 2 2 2 2 2 2 2.2 
YOLOv3 2 4 4 3 4 5 4 4 4 4 4 4 
YOLOv3 3 4 3 4 3 3 3 4 3 3 3 3.3 
YOLOv3 4 5 2 3 4 3 3 3 3 3 3 3.2 

 
Table 3. Dragon fruit size detection performance of developed yield estimation system at different operating speeds using different deep learning 

models 
 

Vehicle 
Speed, 
km/h 

Distance 
from 
Camera 
to plant 

Actual Fruits Size Detected fruits size using SSD Detected fruits size using YOLOv2 Detected fruits size using YOLOv3 

 W, 
cm 

L, 
cm 

Cross 
sectional 
area 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

2 50 13 16 208 15.9 17.9 284.61 63.17 16.1 18 289.8 60.67 15.7 17.6 276.32 67.15 
2 60 13 16 208 12.3 19.3 237.39 85.87 12.6 19.5 245.7 81.88 12.9 17.8 229.62 89.61 
2 70 13 16 208 11.9 18.5 220.15 94.16 12 18.6 223.2 92.69 12.3 17.8 218.94 94.74 
2 80 13 16 208 13.6 17.8 242.08 83.62 13.9 17.9 248.81 80.38 13.5 17.5 236.25 86.42 
2 90 13 16 208 14.7 18.3 269.01 70.67 14.9 18.7 278.63 66.04 14.3 18.3 261.69 74.19 
3 50 13 16 208 16 17.9 286.4 62.31 16.4 18.5 303.4 54.13 16.1 18.1 291.41 59.90 
3 60 13 16 208 12.6 18.8 236.88 86.12 12.7 19.7 250.19 79.72 12.5 19.4 242.5 83.41 
3 70 13 16 208 12.3 18 221.4 93.56 12.5 18.8 235 87.02 12.1 18.6 225.06 91.80 
3 80 13 16 208 13.7 17.6 241.12 84.08 13.9 18.7 259.93 75.03 13.8 17.9 247.02 81.24 
3 90 13 16 208 14.7 18.2 267.54 71.38 15.2 18.8 285.76 62.62 14.9 18.6 277.14 66.76 
4 50 13 16 208 15.8 18.1 285.98 62.51 16.6 18.6 308.76 51.56 16.2 18.2 294.84 58.25 
4 60 13 16 208 12.7 19.1 242.57 83.38 12.6 19.6 246.96 81.27 12.6 19.6 246.96 81.27 
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Vehicle 
Speed, 
km/h 

Distance 
from 
Camera 
to plant 

Actual Fruits Size Detected fruits size using SSD Detected fruits size using YOLOv2 Detected fruits size using YOLOv3 

 W, 
cm 

L, 
cm 

Cross 
sectional 
area 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

W, 
cm 

L, 
cm 

Cross 
sectional 
area 

Detection 
Accuracy 
% 

4 70 13 16 208 12.2 18.3 223.26 92.66 12.7 18.9 240.03 84.60 12.3 18.7 230.01 89.42 
4 80 13 16 208 13.7 18 246.6 81.44 14.2 18.3 259.86 75.07 13.9 18.1 251.59 79.04 
4 90 13 16 208 14.8 18.9 279.72 65.52 15.5 19.3 299.15 56.18 15.1 18.9 285.39 62.79 

 

 
 

Fig. 7. Dragon fruit size detection performance of developed yield estimation system at different operating speeds using different deep learning 
models 
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Table 4. Performance of developed system at different operating speeds using different deep learning models 
 

Model Speed 
(km/h) 

Correct 
Detection of 
Fruits 
 (TP) 

Incorrect 
Detection of 
Fruits (FN) 

Correct 
Detection of 
Non Fruits (FP) 

Incorrect 
Detection of 
Non Fruits 
(TN)  

Accuracy Precision Recall F1 Score 

SSD 2 5 0 0 0 1 1 1 1 
SSD 3 4 1 0 0 0.8 1 0.8 0.88 
SSD 4 4 1 0 0 0.8 1 0.8 0.88 
YOLOv2 2 3 2 0 0 0.6 1 0.6 0.75 
YOLOv2 3 3 2 0 0 0.6 1 0.6 0.75 
YOLOv2 4 2 3 0 0 0.4 1 0.4 0.57 
YOLOv3 2 4 1 0 0 0.8 1 0.8 0.88 
YOLOv3 3 3 2 0 0 0.6 1 0.6 0.75 
YOLOv3 4 3 2 0 0 0.6 1 0.6 0.75 

 

 
 

Fig. 8. Performance of developed system at different operating speeds using different deep learning models 
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Table 5. Field Performance of developed system at 2 km/h operating speed and 70 cm distance of camera from the tree using SSD model 
 
Tree No.  Actual No. 

of Fruits  
Actual fruit size Actual 

weight, g 
Detected fruit size Estimated 

weight, g 
Yield estimation 
accuracy (%) W, cm L, cm Cross 

sectional area 
W, cm L, cm Cross 

sectional area 

1 10 7.3 17.1 124.83 321 7.6 17.7 134.52 346 92.24 
    8.1 16.5 133.65 343 8.5 17.0 144.50 371 91.88 
    8.3 18.2 151.06 388 8.6 18.7 160.82 413 93.54 
    8.2 19 155.8 400 8.7 19.1 166.02 427 93.44 
    8.5 19.5 165.75 426 8.8 20.1 176.88 454 93.29 
    8.3 18.4 152.72 392 8.4 19.0 159.60 410 95.50 
    7.9 18.6 146.94 378 8.1 19.2 155.52 400 94.16 
    8.6 19.1 164.26 422 8.7 20.1 174.87 449 93.54 
    7.8 18.5 144.3 371 8.0 19.1 152.80 393 94.11 
    8.1 16.9 136.89 352 8.3 17.2 142.76 367 95.71 
2 8 7.4 16.8 124.32 316 7.6 17.1 129.96 334 94.33 
    8.9 19.7 175.33 396 9.0 18.9 170.10 437 89.63 
    7.8 18.4 143.52 374 8.0 19.1 152.80 393 95.02 
    8.3 16 132.8 392 8.7 17.8 154.86 398 98.49 
    7.9 18.3 144.57 376 8.3 18.9 156.87 403 92.80 
    8.3 19 157.7 410 8.6 19.8 170.28 438 93.33 
    8.5 19.5 165.75 431 8.8 19.8 174.24 448 96.15 
    8.3 18.4 152.72 397 8.4 19.1 160.44 412 96.21 
3 5 7.4 17.5 129.5 333 7.6 18.1 137.56 353 93.78 
    8.6 16.9 145.34 373 8.9 17.4 154.86 398 93.45 
    8.4 18.6 156.24 401 8.6 19.4 166.84 429 93.22 
    8 18.9 151.2 389 8.3 19.2 159.36 409 94.60 
    8.5 19.5 165.75 426 8.8 20.4 179.52 461 91.69 

Average   8.15 18.23 148.74 382.93 8.40 18.79 158.09 406.19 93.92 
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and size of fruits was selected for the study. The 
test was replicated for 5 time and average 
values were obtained. Yield estimation accuracy 
was varied between 91.69 % to 96.21 % with an 
average of 93.92 % (Table 5). 
 

4. SUMMARY AND CONCLUSION 
 

Based on this study, it can be concluded as 
follows: 
 

1. The developed estimating system work 
well and successfully detects the number 
of fruit size and fruit yield estimation  

2. Highest accuracy, precision, recall and F1 
score were found at 2 km/h operating 
speed with SSD deep learning model. 

3. SSD model performed best, achieving 
perfect detection at 2 km/hr and 
maintaining a high accuracy of detection.   

4. YOLOv3 performs reasonably well at 
slower speeds but saw a decline in 
detections as speed increased, while 
YOLOv2 struggled to maintain accuracy 
under higher-speed conditions. 

5. At all the operating speeds and with all the 
deep learning model architectures, a 
distance of 70 cm between camera and 
plant was observed as most suitable 
distance.   

6. The maximum size detection accuracy 
using SSD, YOLOv2, and YOLOv3 was 
94.16 %, 92.69% and 94.74% 
respectively, observed at 2 km/h operating 
speed.  

7. Yield estimation accuracy was varied 
between 91.69 % to 96.21 % with an 
average of 93.92 % at 2 km/h operating 
speed and 70 cm distance of camera from 
the tree using SSD model. 
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