
*Corresponding author: E-mail: saadboksheem@gmail.com;

Cite as: Almabruk, Saad, Samia Abdalhamid, and Tahani Almabruk. 2025. “Comparative Reliability Analysis of Selenium and
Playwright: Evaluating Automated Software Testing Tools”. Asian Journal of Research in Computer Science 18 (1):34-44.
https://doi.org/10.9734/ajrcos/2025/v18i1546.

Asian Journal of Research in Computer Science

Volume 18, Issue 1, Page 34-44, 2025; Article no.AJRCOS.128913
ISSN: 2581-8260

Comparative Reliability Analysis of
Selenium and Playwright: Evaluating

Automated Software Testing Tools

Saad Almabruk a*, Samia Abdalhamid b

and Tahani Almabruk b

a Computer Science Department, School of Science, The Libyan Academy, Libya.
b Computer Science Department, Faculty of Science, Omar Almukhtar University, Libya.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: https://doi.org/10.9734/ajrcos/2025/v18i1546

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer

review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/128913

Received: 25/10/2024
Accepted: 29/12/2024
Published: 03/01/2025

ABSTRACT

Aims: This study aims to evaluate and compare the reliability of Selenium and Playwright, two
leading frameworks for automated web testing. The assessment focuses on key reliability metrics,
including uptime and the Rate of Occurrence of Failures (ROCOF).
Study Design: A comparative experimental study conducted under controlled testing conditions.
Place and Duration of Study: The study was conducted over a 24-hour continuous testing period
using two laptops with distinct hardware configurations: an HDD-equipped HP laptop and an SSD-
equipped Dell laptop.
Methodology: Reliability was measured using two core metrics: uptime and ROCOF. Tests were
conducted on an HP laptop (HDD) and a Dell laptop (SSD). Two Python scripts — one for Selenium

Original Research Article

https://doi.org/10.9734/ajrcos/2025/v18i1546
https://www.sdiarticle5.com/review-history/128913

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

35

and one for Playwright — were developed to execute identical actions. For the 24-hour uptime test,
Selenium ran on HP and Playwright on Dell. ROCOF was assessed at six-time intervals — 8:00
AM, 8:15 AM, 4:00 PM, 4:15 PM, 12:00 AM, and 12:15 AM — by alternating tool execution between
HP and Dell, allowing for analysis of the effects of hardware and time of day on failure rates.
Results: Selenium achieved 100% uptime with no failures, while Playwright recorded 99.72%
uptime with four downtimes. For ROCOF, both tools had one failure per 10-test sequence, but
Selenium’s higher failure rate per second (0.1208 on HP, 0.1336 on Dell) was due to faster
execution times (7.93s on HP, 7.87s on Dell) compared to Playwright (36.74s on HP, 35.84s on
Dell). The SSD-equipped Dell laptop outperformed the HDD-based HP, with faster completion times
(43.71s vs. 44.67s).
Conclusion: Selenium is ideal for scenarios requiring uninterrupted uptime, while Playwright's
consistent response times suit dynamic web application testing. The study highlights hardware's
role in performance, with SSDs offering superior speed and stability. These findings guide
practitioners in choosing tools based on hardware, stability, and execution needs.

Keywords: Software testing; reliability; selenium; playwright.

1. INTRODUCTION

Automated testing has become a cornerstone of
modern software development, facilitating faster
releases, minimizing manual effort, and
enhancing test coverage. Among the various
tools available, Selenium and Playwright stand
out as two of the most widely used frameworks
for web application testing. Selenium, with its
long-standing presence and broad browser
compatibility, remains a trusted industry
standard. In contrast, Playwright is a more recent
entrant, providing cross-browser testing with
superior performance and support for modern
web technologies. The development of these
frameworks reflects the increasing complexity of
web applications and the growing need for
efficient, dependable testing solutions.
Maintaining the reliability of these tools is critical
for their integration into software development
workflows, as testing interruptions or failures can
hinder development progress and delay product
releases.

Despite their widespread use, there is a lack of
empirical research directly comparing the
reliability of Selenium and Playwright under
controlled conditions. In this context, reliability
refers to the tool's ability to deliver consistent
uptime, minimize test failures, and maintain
stable execution. Selenium is often favored for its
maturity and strong community support, while
Playwright's modern web compatibility and faster
execution present a compelling alternative. This
creates a dilemma for developers and testers
when choosing the most appropriate tool for their
needs. The decision is further complicated by
hardware-related factors, as variations in
system architecture (e.g., SSD vs. HDD) can

influence the performance and stability of both
frameworks.

This study seeks to fill the research gap by
providing a detailed comparative analysis of
Selenium and Playwright, with a primary
emphasis on reliability metrics. It evaluates key
indicators such as uptime and Rate of
Occurrence of Failures (ROCOF) to offer a data-
driven perspective on the strengths and
limitations of each tool. The analysis also
considers the impact of hardware variations by
assessing the performance of both frameworks
on two distinct systems: an HP laptop with an
HDD and a Dell laptop with an SSD. This dual-
system approach ensures a comprehensive
evaluation of the tools' reliability across different
hardware environments.

Automated software testing is heavily influenced
by tools like Selenium and Playwright, both of
which are integral to modern development
practices. Selenium, as one of the earliest open-
source automation frameworks, has a well-
established ecosystem backed by a large
developer community. Altaf et al. (2015) detail
Selenium's evolution from Selenium Core to
WebDriver, which introduced essential features
like cross-browser compatibility, support for
multiple programming languages, and parallel
test execution via Selenium Grid. However,
limitations persist, such as its inability to manage
Windows-based applications and the lack of a
built-in reporting system (Altaf & Rafiq, 2015). To
address these gaps, Gojare et al. (2015)
proposed a structured framework that
incorporates an object repository and modular
utilities to improve reusability and scalability in
testing (Gojare & Gaigaware, 2015). Biju & Ali

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

36

(2020) demonstrated the creation of a hybrid
framework by integrating Selenium with Visual
Studio and TestNG, leveraging the Page Object
Model (POM) to enhance maintainability and
streamline testing processes (Biju & Ali, 2020).

In contrast to Selenium, Playwright, a more
recent addition to the testing landscape,
addresses key limitations of its predecessor.
Notable features include auto-wait functionality to
reduce flaky tests and a modern architecture
optimized for handling dynamic content. Wellner
(2023) highlights Playwright's dynamic
synchronization, which outperforms Selenium’s
static approach, enabling faster test execution
and reducing maintenance costs (Wellner, 2024).
Melyawati et al. (2024) further report that
Playwright executes tests nearly twice as fast as
Selenium for dynamic web applications
(Melyawati, & Sudipa, 2024). dos Santos
Marques (2023) emphasizes Playwright's
seamless integration with CI/CD pipelines,
streamlining test approvals and enhancing
efficiency within DevOps workflows (dos Santos
Marques, 2023).

Comparative studies highlight distinct strengths
and weaknesses between Selenium and
Playwright. Brahmbhatt (2023) notes that while
Selenium excels in certain test execution
scenarios, Playwright's advanced handling of
dynamic elements, floating buttons, and
automatic script synchronization provides an
advantage for modern web applications
(Brahmbhatt, 2023). Pasławski & Pańczyk (2024)
further emphasize Playwright's superiority in
headless execution, reporting faster execution
times and better CPU efficiency compared to
Selenium (Pasławski & Pańczyk, 2024). Blanc et
al. (2022) add another dimension, pointing out
that GUI test frameworks like Playwright may not
fully replicate real-user interactions with the
system under test (SUT), which can pose
limitations for specific test cases (Blanc & Falleri,
2022).

Although Playwright offers several advantages, it
remains in an earlier stage of development
compared to Selenium. Its modern, streamlined
API is still evolving, and community support is
less mature than Selenium’s well-established
network. García et al. (2020) recognize
Playwright as a promising alternative but
emphasize Selenium’s continued dominance as
a stable and reliable solution (García, & Munoz-
2020). Despite this, Metin (2023) illustrates
Playwright’s potential in testing Graphical
Language Server Protocol (GLSP) web modeling

tools, highlighting its ability to support semantic
interactions and multi-environment testing (Metin,
2023). Khan (2023) further underscores
Playwright’s adaptability, showcasing its use in
automated web scraping, where it enables
scalability and real-time data updates — features
that are more difficult to achieve with Selenium
(Khan, 2023).

Numerous studies have compared several
automation testing tools to assess their
capabilities and limitations. Zhyhulin et al. (2022)
compared Playwright with Selenium and
Puppeteer, concluding that Playwright offered
faster execution times. Nevertheless, their study
was limited to basic tests and a simple system
under test (SUT). In contrast, the current
research evaluates these tools on a mature, real-
world web application with diverse and complex
testing scenarios (Zhyhulin, et al., 2022). Pelivani
and Cico (2021) conducted a comparison
between Selenium and Katalon Studio. Their
findings revealed that Selenium surpassed
Katalon in execution efficiency due to Katalon’s
reliance on Groovy, which necessitates extensive
library loading. However, Katalon was
recognized for its ease of setup and user-friendly
reporting capabilities (Pelivani & Cico, 2021).

The scope of this work is a direct comparison of
the reliability of Selenium and Playwright under
controlled conditions. The main underlying
measures of reliability include the following: (1)
Uptime-the proportion of time for which the
system has been up during a test in a 24hour
and (2) the ROCOF, estimating the number of
failures occurring during a test execution The
hardware aspect, concerning the use of one
HDD from HP and an SSD by Dell, will help
illustrate how each tool's reliability depends on
system architecture. Given such a focused area
of research, this article has thus provided useful
advice to be used by a software tester, quality
assurance engineer, or development team to
refine and optimize testing flows. This is justified
because this work sits within the landscape of
continuous integration/continuous deployment
pipelines, which heavily rely on test reliability for
development velocity and release timelines.

2. METHODOLOGY

2.1 Tool Selection Criteria

Selenium and Playwright were selected for this
study due to their distinct capabilities and
strong presence in the software testing domain.

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

37

Selenium, a veteran in automated testing, is
known for its extensive browser support and
compatibility with legacy systems, making it a
widely used industry benchmark. Playwright, in
contrast, introduces modern features like
automatic browser context handling and support
for contemporary web technologies, with
seamless cross-browser automation across
Chromium, WebKit, and Firefox. These
contrasting attributes enabled a comprehensive
assessment of reliability across a variety of real-
world testing scenarios.

2.2 Evaluation Metrics

The assessment of reliability was based on
two key metrics: uptime, which reflects
the continuous availability of the target
webpage during testing, and the rate of
occurrence of failure, which tracks the frequency
of errors or failures encountered while
interacting with both dynamic and static web
elements.

2.3 Experimental Setup

To assess the performance and reliability of
Selenium and Playwright, testing was carried out
on two laptops with distinct hardware
specifications. This strategy enabled a
comprehensive analysis of the extent to which
hardware differences influence the operational
efficiency of each framework.

2.3.1 Hardware Configuration

i. HP Laptop

• Processor: Intel Core i7-8550U CPU

• RAM: 12 GB

• Graphics: NVIDIA GeForce MX 130

• Storage: 930 GB HDD

• Operating System: Windows 10 Pro
ii. Dell Latitude 3400

• Processor: Intel Core i7-8565U CPU

• RAM: 12 GB

• Graphics: NVIDIA GeForce MX 130

• Storage: 256 GB SSD

• Operating System: Windows 10 Pro

The selected hardware configurations were
intended to analyze the impact of storage type
(HDD vs. SSD) and system architecture on the
performance of Selenium and Playwright. It was
anticipated that the SSD in the Dell Latitude 3400
would offer faster data access times compared to
the HDD in the HP laptop, potentially leading to

improved test execution speed and enhanced
system responsiveness
.
2.3.2 Software environment

• Both laptops operated on Windows 10 Pro
to maintain consistency in the testing
environment. Browser versions were
standardized across systems to prevent
variability in performance caused by
software differences. For the tests, the
stable Chrome browser Version
130.0.6735.44 was used, ensuring
uniformity in browser behavior and
rendering. Furthermore, automatic browser
updates were disabled during the testing
period to eliminate discrepancies due to
version changes.

• Development Environment: Python 3.x was
used to execute scripts for both Selenium
and Playwright, maintaining uniformity
across the two frameworks for accurate
performance comparison.

2.3.3 Test Implementation

Two Python scripts, one for Selenium and one
for Playwright, were developed to execute
identical sequences of actions, ensuring a
consistent basis for comparison. These scripts
were designed to perform key actions commonly
encountered in web application testing, including:

• Homepage Load Time: Measuring the time
taken to fully load the homepage.

• Navigation Link Response Times:
Assessing the response times for clicking
and loading navigation links.

• Image Loading Performance: Evaluating
the efficiency and speed of rendering
images on the page.

These actions were selected to simulate typical
user interactions and to evaluate the frameworks'
capabilities in handling both static and dynamic
web elements. The scripts were executed in
repeated cycles over a 24-hour period, with
detailed logs capturing metrics such as response
times, failures, and execution stability.

2.4 Test Scenarios

The test scenario of this study focused on
assessing Selenium and Playwright reliability of
the target webpage (https://nclc.ly/), specifically
uptime and the ROCOF.

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

38

The uptime analysis was conducted over a 24-
hour continuous testing period. During this
experiment, Selenium was executed on an HP
laptop, while Playwright was run on a Dell laptop.
This configuration allowed for a comparative
evaluation of uptime performance under distinct
hardware conditions.

To measure the ROCOF, the role of hardware
differences was explicitly considered. By
alternating the execution of Selenium and
Playwright on HP (HDD) and Dell (SSD) laptops,
the study aimed to explore how system
architecture impacts failure rates and overall
reliability. This approach provided a deeper
understanding of the potential influence of
hardware on each tool’s performance.

The rate of occurrence of failures was measured
at specific time intervals throughout the day to
evaluate the impact of time-based conditions on
system stability. Testing was conducted at the
following time slots:

• 8:00 AM (Selenium on HP, Playwright on
Dell)

• 8:15 AM (Selenium on Dell, Playwright on
HP)

• 4:00 PM (Selenium on HP, Playwright on
Dell)

• 4:15 PM (Selenium on Dell, Playwright on
HP)

• 12:00 AM (Selenium on HP, Playwright on
Dell)

• 12:15 AM (Selenium on Dell, Playwright on
HP)

This staggered approach ensured a
comprehensive evaluation of system
performance across peak, off-peak, and
nighttime conditions.

3. RESULTS AND DISCUSSION

This study offers a comprehensive evaluation of
the reliability of Selenium and Playwright under
controlled testing conditions. The assessment is
guided by key metrics, including uptime and the
rate of occurrence of failures. Data was gathered
through continuous monitoring of test executions
on two hardware configurations: an HP laptop
with an HDD and a Dell laptop with an SSD. This
setup enabled an assessment of how hardware
differences impact the performance of both
frameworks.

This section provides a detailed analysis of the
results, focusing on differences in uptime and
failure rates between the two tools. The influence
of hardware architecture on performance is also
examined to highlight the role of storage type
(HDD vs. SSD) in shaping the tools' reliability. By
systematically comparing Selenium and
Playwright, the study delivers essential insights
into their strengths and limitations, offering
practical guidance for testers and developers in
selecting the most appropriate tool for automated
testing workflows.

3.1 Uptime

Table 1 displays uptime metrics for Selenium and
Playwright, monitored over a 24-hour period. The
analysis focuses on assessing the reliability,
response times, and overall performance of each
tool.

To enable a more comprehensive analysis, the
data is further elaborated in Table 2 and Table 3
offering deeper insights into the frameworks'
performance. This progression allows for a more
detailed examination of how system architecture,
including differences in hardware configurations,

Table 1. Uptime performance of Selenium vs Playwright

Metric Selenium Playwright

Monitoring Duration 1 day, 0:18:05 1 day, 0:17:49
Total Checks Performed 1440 1440
Successful Checks (Website UP) 1440 1436
Failed Checks (Website DOWN) 0 4
Website Uptime 100.00% 99.72%
Website Downtime 0.00% 0.28%
Average Response Time 0.75 seconds 0.71 seconds
Response Time Standard Deviation 1.29 seconds 0.68 seconds
Maximum Response Time 30.53 seconds 9.54 seconds
Minimum Response Time 0.44 seconds 0.43 seconds

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

39

affects the reliability and responsiveness of
Selenium and Playwright under controlled testing
conditions.

3.1.1 Uptime and reliability

This subsection evaluates the uptime of
Selenium and Playwright using the performance
metrics provided in Table 2. Uptime measures
the percentage of time a system remains
operational. The analysis focuses on key
indicators, including total checks performed,
successful checks, failed checks, and the
resulting uptime percentage for both frameworks.
By highlighting differences in these metrics, the
comparison provides insights into each tool’s
ability to support uninterrupted testing sessions
and maintain system stability.

The data presented in Table 2 provides a clear
comparison of the reliability of Selenium and
Playwright, with a particular emphasis on uptime
performance. Selenium demonstrated superior
reliability, achieving a flawless 100% uptime
across 1,440 total checks with zero failed
checks. In contrast, Playwright recorded a
slightly lower uptime of 99.72%, which was
affected by four failed checks out of the same
total of 1,440 checks. Despite the minimal
downtime of 0.28% for Playwright, this small

difference in reliability could be critical in contexts
where uninterrupted system availability is
essential. Both tools operated under nearly
identical monitoring durations, which
underscores the robustness of Selenium's
performance. The absence of failed checks in
Selenium's execution reflects its higher reliability
for sustained, long-term testing without
interruption. Playwright, while still highly reliable,
may require additional measures to mitigate the
impact of brief system downtimes, especially in
environments where continuous availability is
paramount.

3.1.2 Failure and recovery analysis

This subsection analyzes the failure and
recovery performance of Selenium and
Playwright using the metrics presented in Table
3. The analysis focuses on two key indicators:
slow responses (response times exceeding 3.34
seconds) and downtime occurrences. Table 3
reveals that Selenium recorded 19 instances of
slow responses, indicating occasional delays
during test execution, but it maintained zero
downtime, demonstrating high system
availability. In contrast, Playwright experienced
four downtime occurrences, reflecting brief
periods of system unavailability, but no slow
response data was recorded.

Table 2. Comparison of uptime between selenium and playwright in regard of and reliability

Metric Selenium Playwright Observations

Monitoring Duration 1 day, 0:18:05 1 day, 0:17:49 Monitoring durations are nearly
identical.

Total Checks
Performed

1440 1440 Both tools executed the same
number of checks.

Successful Checks 1440 1436 Selenium had no failures; Playwright
missed 4 checks.

Failed Checks 0 4 Selenium had perfect uptime, while
Playwright had 4 failures.

Website Uptime (%) 100.00% 99.72% Selenium achieved perfect uptime;
Playwright had slight downtime.

Website Downtime (%) 0.00% 0.28% Playwright’s downtime was minimal
but present.

Table 3. Comparison of uptime between selenium and playwright in regard to failure and

recovery analysis

Metric Selenium Playwright Observations

Slow Responses (>3.34
seconds)

19 N/A Selenium recorded some slow
responses; no data for Playwright.

Downtime Occurrences None 4 Playwright encountered four
downtime occurrences; Selenium
had none.

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

40

This table illustrates that Selenium experienced
19 instances of slow responses, each exceeding
3.34 seconds, while Playwright did not have any
recorded slow responses during the observation
period. However, in terms of downtime
occurrences, Selenium maintained a perfect
record with zero downtime, whereas Playwright
encountered four separate instances of
downtime. This data highlights a trade-off in
reliability; Selenium may provide continuous
availability but could be prone to slower response
times, while Playwright offers consistent
response speeds but is more susceptible to
system downtimes.

This section analyzes the ROCOF for Selenium
and Playwright, focusing on the frequency of
failures during test execution. The ROCOF

serves as a quantitative measure of system
reliability, reflecting the rate at which failures
occur within a specific time frame. Table 4
presents the ROCOF performance of Selenium
and Playwright across different experimental
timeframes and hardware setups, offering a
comparison of each tool's behavior on HP and
Dell laptops. To enhance the analysis, Fig. 1
visually illustrates the ROCOF trends for both
frameworks across various time slots,
highlighting disparities in failure rates and
emphasizing Selenium's higher failure rate
compared to Playwright.

The analysis presented in Table 4 highlights the
failure rates and stability metrics of Selenium and
Playwright, offering key insights into their
reliability during test execution.

Table 4. ROCOF performance of selenium vs playwright

Experiment
Time

Laptop Tool ROCOF (10 Tests)

Total
Failures

Total
Time (s)

Failures per
second

Failures per
test

8:00 am HP Selenium 1 8.64 0.1158 0.1000
8:00 am Dell Playwright 1 34.28 0.0292 0.1000
8:15 am HP Playwright 1 37.77 0.0265 0.1000
8:15 am Dell Selenium 1 9.14 0.1094 0.1000
4:00 pm HP Selenium 1 7.24 0.1382 0.1000
4:00 pm Dell Playwright 1 35.24 0.0284 0.1000
4:15 pm HP Playwright 1 35.95 0.0278 0.1000
4:15 pm Dell Selenium 1 6.44 0.1552 0.1000
12:00 am HP Selenium 1 8.30 0.1205 0.1000
12:00 am Dell Playwright 1 36.90 0.0271 0.1000
12:15 am HP Playwright 1 36.52 0.0274 0.1000
12:15 am Dell Selenium 1 6.26 0.1598 0.1000

Fig. 1. Bar chart represents the ROCOF for Selenium and Playwright t across various time
slots

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

41

To provide a more detailed understanding, the
data is further divided into three key areas:
failures and test stability (3.2.1), performance by
laptop (3.2.2), and performance by experiment
time (3.2.3). This structured breakdown allows
for a more granular comparison of how hardware
configurations and testing time slots impact the
stability and performance of both frameworks
under controlled testing conditions.

3.1.3 Failures and test stability

The analysis of failures and test stability is based
on the data presented in Table 5, which
compares the rate of occurrence of failures for
Selenium and Playwright. Understanding the
nature and frequency of failures provides direct
insight into system robustness. This data allows
for the identification of patterns and root causes,
which are essential for improving software
reliability.

This subsection evaluates key metrics such as
total failures and failure rates for each
framework, focusing on their consistency across
multiple test runs. As shown in Table 5, both
tools record an equal number of failures per test,
with failures occurring at a steady rate of 0.1
failures per test. These findings indicate that
Selenium and Playwright exhibit similar levels of
stability in handling failures, offering important
insights into their reliability under controlled
testing conditions.

The data presented in Table 5 emphasizes the
stability of Selenium and Playwright with respect
to their Rate of Occurrence of Failure (ROCOF).
Both frameworks exhibit identical stability
metrics, with each recording a failure rate of 0.1
failures per test and one failure per test run. This
indicates that neither Selenium nor Playwright
holds a distinct advantage over the other in terms
of overall test stability. The uniformity of their
failure rates suggests that both frameworks offer
consistent and predictable performance across
multiple test executions.

This level of stability is particularly significant for
software testing frameworks, as predictability and
repeatability are essential for effective debugging
and quality assurance. Stable failure patterns
enable testers to identify, analyze, and address
issues with greater precision. By providing a
consistent testing environment, Selenium and
Playwright support a structured approach to
quality control, thereby reducing the uncertainty
associated with random or sporadic test failures.

3.1.4 Performance by laptop

The analysis of Table 6 examines the
performance of Selenium and Playwright across
two hardware configurations: HP and Dell
laptops. Since hardware differences (like SSDs
vs. HDDs) can affect system responsiveness,
dividing the analysis by laptop configuration
highlights how hardware impacts the reliability of
the testing process. This insight is crucial for
practitioners who must select suitable hardware
for their testing environments.

This subsection evaluates key metrics, including
average test completion time and failure rate per
second for each tool on both devices. As shown
in Table 6, Selenium consistently achieves faster
completion times on both laptops, with slightly
better performance on the Dell laptop. However,
this speed advantage is offset by a higher failure
rate per second compared to Playwright. In
contrast, Playwright exhibits longer test
completion times but maintains a more stable
and consistent failure rate across both laptop
configurations. This analysis highlights the
influence of hardware architecture (SSD vs.
HDD) on the performance and stability of the two
testing frameworks.

The data presented in Table 6 highlights notable
differences in the performance and stability of
Selenium and Playwright when tested on two
distinct hardware configurations: HP laptops with
HDDs and Dell laptops with SSDs. Selenium
consistently demonstrated faster completion
times on both devices, averaging 7.93 seconds

Table 5. Comparison of ROCOF between selenium and playwright in regard of stability

Metric Selenium Playwright Observations

Total Failures 1 per test 1 per test Both tools exhibit an equal
number of failures per test.

Failures per Test 0.1000 0.1000 Failures are consistent
across all tests.

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

42

Table 6. Comparison of ROCOF between selenium and playwright in regard of performance by
laptop

Laptop Tool Average
Total Time (s)

Average Failures
per Second

Observations

HP Selenium 7.93 0.1208 Consistently faster completion
times.

HP Playwright 36.74 0.0272 Longer completion times but lower
failure rates.

Dell Selenium 7.87 0.1336 Faster completion times with
slightly higher failure rates.

Dell Playwright 35.84 0.0279 Slower completion times but
consistent failure rates.

on HP and 7.87 seconds on Dell. This
performance indicates Selenium's superior
speed relative to Playwright, which recorded
completion times of 36.74 seconds on HP and
35.84 seconds on Dell.

However, the trade-off for Selenium's speed
advantage was a higher failure rate. On average,
Selenium's failure rate per second was 0.1208
on HP and 0.1336 on Dell, reflecting an increase
in execution errors. By contrast, Playwright
exhibited significantly lower failure rates, with
0.0272 on HP and 0.0279 on Dell. This finding
indicates that Playwright offers greater
performance stability, even if its execution speed
is slower.

The comparison underscores a fundamental
trade-off between speed and stability. Selenium's
strength lies in its rapid execution, but this comes
at the expense of increased failure rates.
Conversely, Playwright provides more
predictable and consistent performance, though
its execution times are notably longer. The
influence of hardware on performance is also
evident, as the use of SSDs (Dell) improved

completion times for both Selenium and
Playwright relative to HDDs (HP). This
demonstrates the critical role hardware plays in
optimizing the performance of software testing
frameworks.

3.1.5 Performance by experiment time

Table 7 presents the time-based ROCOF
analysis for Selenium and Playwright. Examining
how the time of testing affects reliability (for
example, due to system load, network latency, or
scheduling effects) uncovers temporal factors
that could influence software behavior. This
provides a more holistic understanding of system
reliability in real-world, time-varying conditions.

The analysis in this study was conducted at six
distinct time intervals: 8:00 AM, 8:15 AM, 4:00
PM, 4:15 PM, 12:00 AM, and 12:15 AM, with tool
execution alternating between HP (HDD) and
Dell (SSD) laptops. This staggered testing
schedule allowed for a detailed comparison of
performance across peak and off-peak hours,
shedding light on how system load and time-of-
day influence failure rates.

Table 7. Comparison of ROCOF between Selenium and Playwright in regard of performance by

experiment time

Time Slot Selenium Total
Time (s)

Playwright
Total Time (s)

Key Observations

8:00 AM 8.64 34.28 Selenium is significantly faster.

8:15 AM 9.14 37.77 Similar trend with Selenium
outperforming Playwright.

4:00 PM 7.24 35.24 Selenium maintains faster
performance during peak hours.

4:15 PM 6.44 35.95 Dell-Selenium achieves the fastest
performance here.

12:00 AM 8.30 36.90 Nighttime results favor Selenium for
speed.

12:15 AM 6.26 36.52 Selenium exhibits its fastest results.

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

43

The analysis of the data presented in Table 7
underscores the impact of testing time on the
rate of occurrence of failures and the overall
performance of Selenium and Playwright. Across
all observed time slots, Selenium consistently
demonstrated faster completion times compared
to Playwright. Notably, Selenium’s optimal
performance was observed at 12:15 AM, where it
achieved a completion time of 6.26 seconds. In
contrast, Playwright recorded a significantly
slower completion time of 36.52 seconds during
the same time slot.

Playwright exhibited remarkable stability in its
execution times, which ranged from 34.28 to
37.77 seconds across all time slots. This
indicates that Playwright’s performance remains
stable regardless of temporal variations.
Selenium, however, displayed greater variability,
with completion times ranging from 6.26 to 9.14
seconds. This variation suggests that
Selenium is more susceptible to time-dependent
factors such as system load or hardware
scheduling.

These findings underscore the key distinction
between the two frameworks. Playwright’s
consistency in execution times makes it a more
predictable option for environments where
stability and uniformity are paramount.
Conversely, Selenium's capacity for faster
execution, particularly during off-peak hours such
as 12:15 AM, positions it as a suitable choice for
scenarios where time-sensitive testing is
required. The balance between execution
speed and predictability should therefore inform
the selection of the appropriate testing
framework based on specific operational
priorities.

4. CONCLUSION

This study provides a comprehensive evaluation
of the performance of Selenium and Playwright,
with a focus on key reliability metrics such as
uptime and rate of occurrence of failure. The
analysis reveals that Selenium outperforms
Playwright in terms of uptime, achieving a
flawless 100% availability with no service
interruptions. In contrast, Playwright attained a
99.72% uptime, with four instances of downtime.
While Selenium demonstrated impeccable
availability, Playwright exhibited greater
stability by maintaining consistent response
times with no instances of slow execution.
Conversely, Selenium encountered 19 instances
where its execution time exceeded 3.34 seconds.

The influence of hardware on performance was
also examined. The use of solid-state drives
(SSDs), particularly Dell models, significantly
enhanced the speed and stability of both tools
when compared to hard disk drives (HDDs), such
as those from HP. While Selenium demonstrated
faster task completion, this speed came at the
expense of higher failure rates. In contrast,
Playwright delivered consistent execution times
with minimal performance fluctuations, thereby
offering greater operational stability.

The study also investigated time-based
performance. It was observed that Selenium's
execution speed varied depending on the time of
day, with optimal performance occurring at 12:15
AM. In contrast, Playwright maintained consistent
execution speeds throughout the day, unaffected
by time-based variations. This consistency
positions Playwright as a more predictable option
for time-sensitive test scheduling.

In conclusion, Selenium is the preferred choice
for testing environments where uninterrupted
uptime and system availability are critical. On the
other hand, Playwright is better suited for
scenarios that prioritize stable response times
and execution consistency. Each framework
offers distinct advantages, and the selection
between them should be guided by factors such
as system requirements, hardware
configurations, and the specific demands of the
testing schedule. Future research could provide
valuable insights by exploring the scalability of
these frameworks for mobile and API testing, as
well as their performance under varied network
conditions and in cloud-based testing
environments.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc.) and text-to-image
generators have been used during the writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

Altaf, I., Dar, J. A., ul Rashid, F., & Rafiq, M.

(2015). Survey on selenium tool in
software testing. Paper presented at the

Almabruk et al.; Asian J. Res. Com. Sci., vol. 18, no. 1, pp. 34-44, 2025; Article no.AJRCOS.128913

44

2015 International Conference on Green
Computing and Internet of Things
(ICGCIoT).

Biju, V., & Ali, S. (2020). Automation of Purchase
Order in Microsoft Dynamics 365 by
Deploying Selenium. Computer Science &
Information Technology (CS & IT), 10(4),
101-114.

Blanc, X., Degueule, T., & Falleri, J.-R. (2022).
Diffing e2e tests against user traces for
continuous improvement.

Brahmbhatt, K. H. (2023). Comparative analysis
of selecting a test automation framework
for an e-commerce website. Tallinn
University of Technology.

dos Santos Marques, P. T. (2023). Optimization
ofapprovaltimein webuitests.

García, B., Gallego, M., Gortázar, F., & Munoz-
Organero, M. (2020). A survey of the
selenium ecosystem. Electronics, 9(7),
1067.

Gojare, S., Joshi, R., & Gaigaware, D. (2015).
Analysis and design of selenium webdriver
automation testing framework. Procedia
Computer Science, 50, 341-346.

Khan, A. (2023). Design and implementation of
an automated web scraping system:
enhancing accuracy and efficiency for
Nettileasing Finland Oy.

Melyawati, N. L. P., Asana, I. M. D. P., Putri, N.
W. S., Atmaja, K. J., & Sudipa, I. G. I.

(2024). Comparison of Automation Testing
On Card Printer Project Using Playwright
And Selenium Tools. Journal of Computer
Networks, Architecture and High
Performance Computing, 6(3), 1309-
1320.

Metin, H. (2023). Testing of GLSP-based web
modeling tools. Technische Universität
Wien,

Pasławski, P., & Pańczyk, M. (2024).
Comparison of selected tools for
automation testing of Web applications.
Journal of Computer Sciences Institute, 31,
145-150.

Pelivani, E., & Cico, B. (2021). A comparative
study of automation testing tools
for web applications. Paper presented at
the 2021 10th Mediterranean
Conference on Embedded Computing
(MECO).

Wellner, C. J. (2024). Comparing Static and
Dynamic Synchronization of GUI-based
tests: An Industrial study. In.

Zhyhulin, D., Kasian, K., & Kasian, M. (2022).
Combined method of prioritization and
automation of software regression testing.
Paper presented at the 2022 IEEE 16th
International Conference on
Advanced Trends in Radioelectronics,
Telecommunications and Computer
Engineering (TCSET).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/128913

https://www.sdiarticle5.com/review-history/128913

