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ABSTRACT 
 

Soil contamination poses a significant threat to the environment and human health, necessitating 
effective and sustainable remediation strategies. Nanomaterials have emerged as promising 
agents for soil remediation due to their unique properties, such as high surface area, reactivity, and 
adsorption capacity. This review explores the application of various nanomaterials, including iron-
based nanoparticles, carbon nanotubes, graphene, and metal oxide nanoparticles, in the 
remediation of contaminated soils. The mechanisms of contaminant immobilization, such as 
adsorption, reduction, and degradation, are discussed in detail. The article also highlights the 
potential environmental risks associated with the use of nanomaterials and the need for responsible 
application and monitoring. Furthermore, the review examines the integration of nanomaterials with 
other remediation techniques, such as bioremediation and phytoremediation, to enhance the 
overall efficiency and sustainability of the remediation process. The challenges and future 
perspectives in the field of nanomaterial-based soil remediation are also addressed. This 
comprehensive review provides valuable insights into the application of nanomaterials for 
sustainable soil remediation and contaminant immobilization, emphasizing the need for further 
research to optimize their performance and minimize potential risks. 
 

 
Keywords:  Nanomaterials; soil remediation; contaminant immobilization; sustainable remediation; 

environmental nanotechnology. 
 

1. INTRODUCTION 
 
Soil contamination has become a global concern 
due to the increasing anthropogenic activities, 
such as industrial processes, agricultural 
practices, and improper waste disposal [1]. The 
presence of contaminants in soil, including heavy 
metals, organic pollutants, and pesticides, poses 
significant risks to the environment and human 
health; Secondary pollution refers to the 
unintended consequences or byproducts of 
remediation processes that can lead to further 
environmental contamination. For example, when 
contaminated soil is excavated and transported 
to landfills, there is a risk of the contaminants 
leaching into groundwater or being released into 
the air during transportation. Similarly, chemical 
treatments used to remediate soil can sometimes 
introduce new pollutants or mobilize existing 
contaminants, leading to their spread to 
previously uncontaminated areas. These 
secondary pollution issues highlight the need for 
careful consideration and planning when 

implementing soil remediation strategies to 
ensure that the remediation process itself does 
not exacerbate environmental problems. Cai et 
al., [2]. Conventional soil remediation techniques, 
such as excavation and landfilling, are often 
costly, time-consuming, and may lead to 
secondary pollution [3]. Therefore, there is an 
urgent need for sustainable and efficient 
remediation strategies to address soil 
contamination. 
 
Nanotechnology has emerged as a                   
promising approach for soil remediation,               
offering unique advantages over traditional 
methods [4]. Nanomaterials, defined as  
materials with at least one dimension in the 
nanoscale range (1-100 nm), exhibit 
extraordinary properties, such as high surface 
area, reactivity, and adsorption capacity [5]. 
These properties make nanomaterials                   
excellent candidates for the immobilization                
and degradation of contaminants in soil                    
[6].  
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Nanotechnology, particularly the use of 
nanomaterials, is considered a sustainable 
approach for soil remediation due to several 
factors: 
 

1. High efficiency: The unique properties of 
nanomaterials, such as high surface area 
and reactivity, enable them to effectively 
adsorb, immobilize, or degrade 
contaminants in soil more efficiently than 
conventional methods. This means that a 
smaller amount of nanomaterials can treat 
a larger volume of contaminated soil, 
reducing the overall environmental 
footprint of the remediation process. 

2. In-situ application: Nanomaterials can be 
applied directly to the contaminated soil, 
allowing for in-situ remediation. This 
eliminates the need for excavation and 
transportation of contaminated soil, which 
are energy-intensive processes that can 
lead to secondary pollution. In-situ 
remediation using nanomaterials 
minimizes the disturbance to the 
environment and reduces greenhouse gas 
emissions associated with soil 
transportation. 

3. Reduced use of chemicals: Nanomaterials 
can often achieve soil remediation without 
the need for large quantities of chemicals, 
which are commonly used in traditional 

remediation methods. By minimizing the 
use of chemicals, nanotechnology reduces 
the risk of introducing new pollutants into 
the environment and helps maintain soil 
quality. 

4. Potential for regeneration and reuse: Some 
nanomaterials, such as those based on 
magnetic properties, can be easily 
separated from the soil after remediation. 
This allows for the regeneration and reuse 
of the nanomaterials, further enhancing the 
sustainability of the approach by 
minimizing waste generation and 
conserving resources. 

 

2. TYPES OF NANOMATERIALS FOR 
SOIL REMEDIATION 

 

2.1 Iron-Based Nanoparticles 
 

Iron-based nanoparticles, particularly zero-valent 
iron (nZVI), have gained significant attention in 
soil remediation due to their high reactivity and 
adsorption capacity [7]. nZVI particles can 
effectively reduce and immobilize a wide range of 
contaminants, including chlorinated organic 
compounds, heavy metals, and radionuclides [8]. 
The small size and high surface area                           
of nZVI particles enhance their reactivity and 
mobility in soil, allowing for in situ remediation 
[9]. 

 

Table 1. Properties and applications of iron-based nanoparticles in soil remediation 
 

Nanoparticle Size (nm) Surface Area (m2/g) Contaminants Targeted 

nZVI 10-100 20-40 Chlorinated organics 
FeO 20-50 50-100 Heavy metals 
Fe/Pd 10-30 30-60 PCBs, TCE 

 

 
 

Fig. 1. Schematic representation of the remediation mechanism of nZVI particles in 
contaminated soil 
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Table 2. Adsorption capacities of carbon-based nanomaterials for various contaminants 
 

Nanomaterial Contaminant Adsorption Capacity (mg/g) 

CNTs Lead (Pb) 100-200 
CNTs Phenanthrene 50-100 
Graphene Cadmium (Cd) 200-300 
Graphene Naphthalene 80-120 

 

  
 

Fig. 2(a). TEM images of (a) carbon nanotubes 
 

 

Fig. 2 (b). TEM images of graphene nanosheets 
 

2.2 Carbon-Based Nanomaterials 
 

Carbon-based nanomaterials, such as carbon 
nanotubes (CNTs) and graphene, have gained 
attention for their exceptional adsorption capacity 
and high surface area [10]. CNTs possess a 
hollow tubular structure with a large specific 
surface area, making them effective adsorbents 
for various contaminants, including organic 
pollutants and heavy metals [11]. Graphene, a 
two-dimensional carbon nanomaterial, exhibits 
excellent adsorption properties due to its large 
surface area and π-π interactions with aromatic 
contaminants [12]. 

2.3 Metal Oxide Nanoparticles 
 
Metal oxide nanoparticles, such as titanium 
dioxide (TiO), zinc oxide (ZnO), and manganese 
oxide (MnO), have been investigated for their 
potential in soil remediation [13]. These 
nanoparticles exhibit photocatalytic properties, 
enabling the degradation of organic 
contaminants upon exposure to light [14]. 
Additionally, metal oxide nanoparticles can 
adsorb and immobilize heavy metals through 
surface complexation and ion exchange 
mechanisms [15]. 
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Table 3. Photocatalytic degradation efficiencies of metal oxide nanoparticles for organic 
contaminants 

 
Nanoparticle Contaminant Degradation Efficiency (%) 

TiO Methylene blue 80-90 

ZnO Rhodamine B 70-80 

MnO Phenol 60-70 

 

 
 

Fig. 3. Schematic representation of the photocatalytic degradation mechanism of organic 
contaminants by metal oxide nanoparticles 

 

3. SYNTHESIS AND CHARACTERIZATION 
OF NANOMATERIALS 

 

3.1 Synthesis Methods 
 
Various synthesis methods have been employed 
to produce nanomaterials for soil remediation, 
including chemical reduction, sol-gel, 
hydrothermal, and green synthesis [16]. 
Chemical reduction is a common method for 
synthesizing metal nanoparticles, such as nZVI, 
where a reducing agent is used to convert metal 
ions into their elemental form [17]. Sol-gel and 
hydrothermal methods are widely used for the 
synthesis of metal oxide nanoparticles, allowing 
for the control of particle size and morphology 
[18]. Green synthesis methods, which utilize 
plant extracts or microorganisms as reducing and 
stabilizing agents, have gained attention due to 
their eco-friendly nature and cost-effectiveness 
[19]. 
 
The cost-effectiveness of green synthesis 
methods for producing nanomaterials is indeed a 
significant factor that contributes to their 
sustainability and potential for widespread use in 
soil remediation applications. 

1. Lower production costs: Green synthesis 
methods often utilize readily available, 
inexpensive, and renewable resources, 
such as plant extracts or microorganisms, 
as reducing and stabilizing agents. This 
reduces the overall cost of nanomaterial 
production compared to traditional 
chemical synthesis methods that require 
expensive reagents and equipment. The 
lower production costs make 
nanomaterials more accessible and 
economically viable for large-scale soil 
remediation projects. 

2. Reduced environmental impact: By 
using natural and renewable resources, 
green synthesis methods minimize the 
environmental footprint associated with 
nanomaterial production. This is in contrast 
to chemical synthesis methods that may 
rely on toxic chemicals and generate 
hazardous waste. The eco-friendly nature 
of green synthesis aligns with the 
principles of sustainability, as it reduces 
the negative environmental impact of 
nanomaterial production. 

3. Potential for local production: The 
availability of natural resources for green 
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synthesis, such as plant extracts, may 
enable the local production of 
nanomaterials near the contaminated sites. 
This decentralized production approach 
reduces transportation costs and 
emissions, further enhancing the 
sustainability of the remediation process. 
Local production also promotes community 
involvement and empowerment, as it 
creates opportunities for local stakeholders 
to participate in the remediation                
efforts. 

 
Increased adoption and implementation: The 
cost-effectiveness and eco-friendliness of green-
synthesized nanomaterials can lead to increased 
adoption and implementation of nanotechnology-
based soil remediation solutions. As the 
economic barrier is lowered and the 
environmental benefits are demonstrated, more 
stakeholders, including governments, industries, 

and communities, may be willing to invest in and 
deploy these sustainable remediation strategies. 
 

3.2 Characterization Techniques 
 

Characterization of nanomaterials is crucial to 
understand their properties and performance in 
soil remediation. Various techniques are 
employed to characterize nanomaterials, 
including transmission electron microscopy 
(TEM), scanning electron microscopy (SEM), X-
ray diffraction (XRD), Fourier-transform infrared 
spectroscopy (FTIR), and Brunauer-Emmett-
Teller (BET) surface area analysis [20].  TEM 
and SEM provide information on the size, shape, 
and morphology of nanoparticles, while XRD is 
used to determine the crystalline structure and 
phase composition [21]. FTIR helps identify 
functional groups present on the surface of 
nanomaterials, and BET analysis measures the 
specific surface area and pore size distribution 
[22]. 

 
Table 4. Characterization techniques for nanomaterials used in soil remediation 

 

Technique Information Provided 

TEM Size, shape, morphology 
SEM Surface morphology 
XRD Crystalline structure, phases 
FTIR Functional groups 
BET Surface area, pore size 

 

 
 

Fig. 4. (a) TEM image of nZVI particles and (b) XRD pattern of TiO nanoparticles. 
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4. MECHANISMS OF CONTAMINANT 
IMMOBILIZATION 

 

4.1 Adsorption 
 
Adsorption is a key mechanism by which 
nanomaterials immobilize contaminants in soil 
[23]. The high surface area and reactive sites of 
nanomaterials enable them to adsorb 
contaminants through various interactions, such 
as electrostatic attraction, surface complexation, 
and π-π interactions [24]. The adsorption 
capacity of nanomaterials depends on factors 
such as pH, temperature, and the presence of 
competing ions [25]. Adsorption isotherms, such 
as Langmuir and Freundlich models, are used to 
describe the adsorption behavior and determine 
the maximum adsorption capacity of 
nanomaterials [26]. 
 

4.2 Reduction 
 
Reduction is another important mechanism for 
contaminant immobilization, particularly for heavy 
metals and chlorinated organic compounds [27]. 
Nanomaterials with reducing properties, such as 

nZVI, can donate electrons to contaminants, 
converting them into less toxic or insoluble forms 
[28]. The reduction process can lead to the 
precipitation of heavy metals as insoluble 
hydroxides or sulfides, rendering them immobile 
in soil [29]. In the case of chlorinated organic 
compounds, the reduction mechanism involves 
the breaking of carbon-chlorine bonds, resulting 
in the formation of less toxic byproducts [30]. 
 

4.3 Degradation 
 
Nanomaterials can also facilitate the degradation 
of organic contaminants in soil through 
photocatalytic and oxidative processes [31]. 
Metal oxide nanoparticles, such as TiO and ZnO, 
possess photocatalytic properties, generating 
reactive oxygen species (ROS) upon exposure to 
light [32]. These ROS, including hydroxyl radicals 
and superoxide anions, can oxidize and degrade 
organic contaminants into less harmful 
compounds [33]. The efficiency of photocatalytic 
degradation depends on factors such as the 
intensity and wavelength of light, the 
concentration of nanoparticles, and the nature of 
the contaminants [34]. 

 
Table 5. Mechanisms of contaminant immobilization by nanomaterials 

 

Mechanism Description Nanomaterials Involved 

Adsorption Binding of contaminants to surface CNTs, graphene, nZVI 
Reduction Conversion to less toxic forms nZVI, bimetallic NPs 
Degradation Breakdown of organic contaminants TiO, ZnO 

 

 
 
Fig. 5. Schematic representation of the adsorption, reduction, and degradation mechanisms of 

contaminant immobilization by nanomaterials 
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5. ENVIRONMENTAL RISKS AND 
RESPONSIBLE APPLICATION 

 
While nanomaterials offer promising solutions for 
soil remediation, their potential environmental 
risks cannot be overlooked [35]. The release of 
nanomaterials into the environment may lead to 
unintended consequences, such as toxicity to 
non-target organisms and the potential for 
bioaccumulation [36]. Therefore, responsible 
application and monitoring of nanomaterials in 
soil remediation are crucial to minimize potential 
risks [37]. 
 
To ensure the safe and responsible use of 
nanomaterials, several strategies can be 
employed. Firstly, the selection of nanomaterials 
should be based on their environmental 
compatibility and biodegradability [38]. 
Biodegradable nanomaterials, such as those 
derived from natural polymers or green 
synthesized nanoparticles, can minimize the 
long-term environmental impact [39]. Secondly, 
the application of nanomaterials should be 
optimized to minimize their release into the 
environment, such as using stabilized 
nanoparticles or incorporating them into support 
materials [40]. 
 
Furthermore, comprehensive risk assessment 
and monitoring protocols should be established 
to evaluate the fate, transport, and potential 
toxicity of nanomaterials in soil [41]. This 
includes studying the interactions of 
nanomaterials with soil components, such as 
organic matter and clay minerals, and assessing 
their impact on soil microbial communities [42]. 
Long-term monitoring of remediated sites is 
essential to ensure the stability and effectiveness 
of the applied nanomaterials [43]. 
 
The cost-effectiveness of green synthesis 
methods for producing nanomaterials is indeed a 
significant factor that contributes to their 
sustainability and potential for widespread use in 
soil remediation applications. 
 

1. Lower production costs: Green synthesis 
methods often utilize readily available, 
inexpensive, and renewable resources, 
such as plant extracts or microorganisms, 
as reducing and stabilizing agents. This 
reduces the overall cost of nanomaterial 
production compared to traditional 
chemical synthesis methods that require 
expensive reagents and equipment. The 
lower production costs make 

nanomaterials more accessible and 
economically viable for large-scale soil 
remediation projects. 

2. Reduced environmental impact: By using 
natural and renewable resources, green 
synthesis methods minimize the 
environmental footprint associated with 
nanomaterial production. This is in contrast 
to chemical synthesis methods that may 
rely on toxic chemicals and generate 
hazardous waste. The eco-friendly nature 
of green synthesis aligns with the 
principles of sustainability, as it reduces 
the negative environmental impact of 
nanomaterial production. 

3. Potential for local production: The 
availability of natural resources for green 
synthesis, such as plant extracts, may 
enable the local production of 
nanomaterials near the contaminated sites. 
This decentralized production approach 
reduces transportation costs and 
emissions, further enhancing the 
sustainability of the remediation process. 
Local production also promotes community 
involvement and empowerment, as it 
creates opportunities for local stakeholders 
to participate in the remediation efforts. 

4. Increased adoption and implementation: 
The cost-effectiveness and eco-
friendliness of green-synthesized 
nanomaterials can lead to increased 
adoption and implementation of 
nanotechnology-based soil remediation 
solutions. As the economic barrier is 
lowered and the environmental benefits 
are demonstrated, more stakeholders, 
including governments, industries, and 
communities, may be willing to invest in 
and deploy these sustainable remediation 
strategies. 

 

6. INTEGRATION WITH OTHER 
REMEDIATION TECHNIQUES 

 

The integration of nanomaterials with other 
remediation techniques can enhance the overall 
efficiency and sustainability of the remediation 
process [44]. Nanomaterials can be combined 
with bioremediation, phytoremediation, and 
chemical oxidation to achieve synergistic effects 
and overcome the limitations of individual 
methods [45]. 
 

6.1 Nanomaterials and Bioremediation 
 

Bioremediation involves the use of 
microorganisms to degrade or transform 
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contaminants in soil [46]. The integration of 
nanomaterials with bioremediation can enhance 
the bioavailability of contaminants, provide 
additional electron acceptors or donors, and 
improve the survival and activity of the degrading 
microorganisms [47]. For example, nZVI particles 
can stimulate the growth of anaerobic bacteria by 
acting as an electron donor, promoting the 
reductive dechlorination of chlorinated organic 
compounds [48]. 
 

6.2 Nanomaterials and Phytoremediation 
 
Phytoremediation employs plants to extract, 
accumulate, or degrade contaminants in soil [49]. 
Nanomaterials can be used to enhance the 
phytoremediation process by improving the 
uptake and translocation of contaminants in 
plants [50]. Metal oxide nanoparticles, such as 
TiO and ZnO, can be applied to the soil or foliar 
surfaces of plants to facilitate the photocatalytic 
degradation of organic contaminants [51]. 
Additionally, nanomaterials can be used to 
improve the stress tolerance and growth of plants 
in contaminated soils [52]. 

 
6.3 Nanomaterials and Chemical 

Oxidation 
 
Chemical oxidation involves the use of strong 
oxidizing agents, such as hydrogen peroxide or 
persulfate, to degrade organic contaminants in 
soil [53]. Nanomaterials can act as catalysts to 
enhance the efficiency of chemical oxidation 
processes [54]. For instance, iron oxide 
nanoparticles can activate persulfate to generate 
sulfate radicals, which are powerful oxidizing 
agents capable of degrading a wide range of 
organic contaminants [55]. 

 
7. CHALLENGES AND FUTURE 

PERSPECTIVES 
 
Despite the promising potential of nanomaterials 
in soil remediation, several challenges need to 
be addressed to ensure their widespread 
application and commercialization [56]. One of 
the main challenges is the scalability and cost-
effectiveness of nanomaterial production and 
application [57]. The development of low-cost 
and environmentally friendly synthesis methods, 
such as green synthesis, can help overcome this 
challenge [58]. 
 
Another challenge is the lack of long-term field 
studies to evaluate the performance and stability 

of nanomaterials in real-world soil conditions 
[59]. Most studies have been conducted at the 
laboratory scale, and the transfer of these results 
to field applications requires further investigation 
[60]. Long-term monitoring and risk assessment 
of nanomaterial-treated soils are necessary to 
ensure their safety and effectiveness [61]. 
 
Future research should focus on the 
development of novel nanomaterials with 
enhanced specificity, selectivity, and stability for 
targeted contaminants [62]. The functionalization 
of nanomaterials with specific ligands or 
biomolecules can improve their adsorption 
capacity and selectivity towards specific 
contaminants [63]. Additionally, the development 
of multifunctional nanomaterials that combine 
adsorption, reduction, and degradation properties 
can provide a more comprehensive remediation 
approach [64]. 
 

The integration of nanomaterials with advanced 
technologies, such as sensors and remote 
monitoring systems, can enable real-time 
monitoring and optimization of the remediation 
process [65]. Nanosensors can be deployed in 
soil to detect and quantify contaminants, 
providing valuable information for site 
assessment and remediation planning [66]. 
Remote monitoring systems can help track the 
fate and transport of nanomaterials in soil, 
ensuring their effective distribution and 
minimizing potential risks [67]. 
 

8. CONCLUSION 
 
Nanomaterials have emerged as promising 
agents for sustainable soil remediation and 
contaminant immobilization. Their unique 
properties, such as high surface area, reactivity, 
and adsorption capacity, make them effective in 
adsorbing, reducing, and degrading a wide range 
of contaminants. Iron-based nanoparticles, 
carbon-based nanomaterials and metal oxide 
nanoparticles have shown great potential in 
immobilizing various soil contaminants through 
mechanisms such as adsorption, reduction, and 
degradation. The integration of nanomaterials 
with other remediation techniques, like 
bioremediation and phytoremediation, offers 
synergistic benefits and improved overall 
efficiency. 
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