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Abstract 

 
In sample survey the nature of correlation between the study and auxiliary variables plays a crucial role in 

improving the accuracy of the estimates. In this study a generalized mixed-optimum estimators that handle 

the three nature of correlation for different values (-1,0,1) of the scalar was proposed for estimating the finite 

population mean when there is information on the minimum and maximum values of the auxiliary variable 

and when both the auxiliary and study variables exhibit extreme values. The expression for the mean squared 

errors and biases were derived to the first order of approximation. The performance of the proposed 

estimators, relative to conventional methods, has been rigorously analyzed, revealing notable improvements. 
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Theoretical analysis confirmed that correcting the estimators for mitigating maximum and minimum values 

enhanced its efficiency, and these findings have been empirically validated through comprehensive numerical 

analysis. 

 

 

Keywords: Mixed-optimum estimator; auxiliary variable; outliers; mean squared error. 

 

1 Introductions 
 

The estimation of the population parameters such as mean, total, proportion and even population ratio of the 

study variable, with greater precision, minimum cost and time is a persistent issue in sampling practice. The use 

of an auxiliary information can increase the precision of an estimator when study variable, say, y is highly 

correlated with auxiliary variable, say, x. For example, oil production and revenue, exchange rate and inflation 

rate, agricultural output and subsidies, government expenditure and gross domestic growth, malaria incidence 

and mosquito net distribution, infant mortality rate and immunization coverage patient age and blood pressure 

levels, body mass index and cholesterol levels. Cochran (1940), used auxiliary information to develop the ratio 

estimator for estimating population mean of the study variable using single phase sampling design. Several 

studies among many exist on the use of auxiliary variables which enhanced the precision of the study variable in 

sample survey, such as: Samiuddin and Hanif (2007), Singh and Espejo (2007), Hanif el al. (2010), Swain 

(2012), Shahbaz et al. (2014), Kanwai et al. (2016). Estimating the population mean in the presence of outliers 

can lead to biased and inaccurate results, as these extreme values can significantly influence the sample mean 

and inflate or deflate its value.  Ratio, regression, difference, product and mixed estimators are also affected by 

the presence of extreme value in the data set which produce less efficient estimate. Extreme values in financial 

data can lead to inaccurate predications of stock prices and investment risks, in medical research, ignoring 

extreme values in patient outcomes can skew disease prevalence estimate and treatment effectiveness, extreme 

values in survey responses can distort public opinion estimates and policy recommendation, in reliability 

engineering ignoring extreme failure times can lead to inaccurate estimates of product lifespan and maintenance 

schedules. There have been few studies on the correction of extreme values, among which includes the 

following: Khan & Shabbir (2013) suggested some modified ratio, product, and regression type estimators when 

using minimum and maximum values. Al-Hossain and Khan (2014) worked on the estimation of population 

mean using maximum and minimum values under simple random sampling by incorporating the knowledge of 

two auxiliary variables. Khan (2015), presents a ratio estimator for the estimation of finite population mean of 

the study variable under double sampling scheme when there are unusually low and unusually high values and 

analyzes their properties. Darez et al. (2018), suggested an improved class of ratio type estimators in estimating 

the finite population mean when information on minimum and maximum values of the auxiliary variable is 

known. Other authors that worked on the correction of extreme values comprises: Mohanty and Sahoo (1995), 

Walia et al. (2015), Cekim and Cingi (2016) and Olayiwola et al., (2021). In their studies the proposed 

estimators are relative to their usual counterparts. 

 

The prior detection of the presence of extreme value in the data set on both the study and auxiliary variables, to 

the application of estimators, is very important to obtaining efficient estimate. In this study, a generalized 

modified ratio-product-cum-exponential estimator that can handle the ratio, product and regression challenges 

for outliers in order to improve the validity of the population parameters is proposed. These proposed estimators 

can be used for the estimation of the population mean in these areas among others, disease outbreak, hospital-

acquired infection, in environmental studies natural disaster (hurricane, earthquakes) nuclear accidents, bank 

failures, market crashes, students’ academic performance 

 

2 Materials and Methods 
 

2.1 Research design 
 

Consider a finite population 𝑈 = (𝑈1, 𝑈2, − − −,𝑈𝑁) of size N units. Let 𝑦 and 𝑥 denote the study variable and 

auxiliary variable respectively. A sample of size 𝑛  (𝑛 < 𝑁)  assuming a simple random sampling without 

replacement (SRSWOR)  𝑠 of size 𝑛 is drawn from the population 𝑈 (𝑠 ⊂ 𝑈).  The purpose is to estimate the 

population mean of the study variable 𝑌̅ =
1

𝑁
∑𝑦𝑖 . It is further assumed that the population mean 𝑋̅ =

1

𝑁
∑𝑥𝑖 of 
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the auxiliary variable 𝑥 is known. The minimum says (𝑥𝑚𝑖𝑛) and maximum say (𝑥𝑚𝑎𝑥) values of the auxiliary 

variables are also assumed to be known. 

 

In sample survey, mean per unit estimators for finite population mean is very sensitive to unexpected values, if 

there exists unexpected very large (say 𝑦𝑚𝑎𝑥) and very small (say 𝑦𝑚𝑖𝑛) units in the population, as a result of 

this, the population mean will be either underestimated (in case the sample contains 𝑦min) or overestimated (in 

case it contains𝑦𝑚𝑎𝑥). To overcome this situation, the methods of Sandal (1972, as cited in Khan and Shabbir 

2013)) is employed mitigate the effect of these extreme values. He suggested the following unbiased estimator: 

 

𝑦̅𝑠 = {

  (𝑦̅ + 𝑐1),   

(𝑦̅ − 𝑐1),
𝑦̅

                      (1) 

 

where, 
(𝑦̅ + 𝑐1) if sample contains 𝑦𝑚𝑖𝑛 but not 𝑦𝑚𝑎𝑥  

(𝑦̅ − 𝑐1) if sample contains 𝑦𝑚𝑎𝑥  but not 𝑦𝑚𝑖𝑛, 

𝑦̅   for all other samples, and c is a constant.  

The variance of 𝑦̅𝑠 is given by: 

 

 𝑉(𝑦̅𝑠) =  𝜃𝑆𝑦
2 −

2𝜃𝑛𝑐

𝑁−1
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 − 𝑛𝑐)  (2) 

 

 𝑉(𝑦̅𝑠)𝑜𝑝𝑡 = 𝑉(𝑦̅)  −
𝜃(∆𝑦)2

2(𝑁−1)
 (3) 

 

which is always smaller than 𝑉(𝑦̅) 
 

where: 

 

𝑉(𝑦̅) is the variance of mean per unit estimator 𝑦̅ = ∑
𝑦𝑖

𝑛

𝑛
𝑖=1    

 

𝜃 =
1

𝑛
−

1

𝑁
 , 𝑆𝑦

2 =
1

1−𝑁
∑ (𝑦𝑖 − 𝑌̅)

2𝑁
𝑖=1  

 

2.2 Estimators for estimating the population mean 
 

Some of the estimators for estimating the population mean includes: 

 

The sample mean of the study variable is given as:  

                                                                     

𝑦̅ =
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

 (4) 

 

which is an unbiased estimator of finite population variance (𝑆𝑦
2)and its variance is 

 

Var.(𝑦̅) = 𝜃𝑌̅2𝐶𝑦
2 (5) 

 

Bias(𝑦̅) = 0                  (6) 
 

The usual ratio [Cochran (1940)] and product [Robson (1957) and Murthy (1964)] as cited in Singh et al.,(2020) 

estimators of population mean have been defined as: 

Ratio estimator: 

 

𝑦̅𝑅 = 𝑦̅
𝑋̅

𝑥̅
 (7) 
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 MSE(𝑦̅𝑅) = 𝜃𝑌̅2(𝐶𝑦
2 + 𝐶𝑥

2 − 2𝜌𝑦𝑥𝐶𝑦𝐶𝑥) (8) 
 

Bias(𝑦̅𝑅) = 𝜃𝑌̅(𝐶𝑥
2 − 𝜌𝑦𝑥𝐶𝑦𝐶𝑥) (9) 

 

Product estimator: 

 

𝑡𝑃 = 𝑦̅
𝑥̅

𝑋̅
 

    (10) 
 

 

MSE(𝑦̅𝑝) = 𝜃𝑌̅
2(𝐶𝑦

2 + 𝐶𝑥
2 + 2𝜌𝑦𝑥𝐶𝑦𝐶𝑥)  (11) 

 

Bias(𝑦̅𝑃) = 𝜃𝑌̅𝜌𝑦𝑥𝐶𝑦𝐶𝑥 
(12) 

 

Bahl and Tuteja (1991, as cited in Abiodun et al., 2021), exponential ratio and product type estimator  

 

Exponential Ratio:  

          

𝑦̅𝐸𝑅 = 𝑦̅ 𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
] 

        
 

(13) 

 

MSE(𝑦̅𝐸𝑅) = 𝑌̅
2𝜃 [𝐶𝑦

2 +
1

4
𝐶𝑥
2 − 𝜌𝑦𝑥𝐶𝑦𝐶𝑥] 

 

     (14) 
 

 

Bias (𝑦̅𝐸𝑅) = 𝜃𝑌̅ [
3𝐶𝑥

2

8
−
𝜌𝑦𝑥𝐶𝑦𝐶𝑥

2
] 

  (15) 

 

Exponential Product:        

 

𝑦̅𝐸𝑃 = 𝑦̅ 𝑒𝑥𝑝 [
𝑥̅ − 𝑋̅

𝑥̅ + 𝑋̅
] 

 (16) 
 

 

MSE (𝑦̅𝐸𝑃) = 𝜃𝑌̅
2 [𝐶𝑦

2 +
1

4
𝐶𝑥
2 + 𝜌𝑦𝑥𝐶𝑦𝐶𝑥] 

 

 (17) 
 

Bias (𝑦̅𝐸𝑃) = 𝜃𝑌̅ [
𝜌𝑦𝑥𝐶𝑦𝐶𝑥

2
−
𝐶𝑦
2

8
] 

 (18) 

 

Cochran (1942) regression estimator 

 

𝑦̅𝑅𝑒𝑔. = 𝑦̅ + 𝑏𝑦𝑥(𝑋̅ − 𝑥̅)   (19) 

 

MSE (𝑦̅𝑅𝑒𝑔.) =  𝜃𝑌̅
2𝐶𝑦

2(1 − 𝜌𝑦𝑥
2 )         (20) 

 

2.3 Proposed estimators 
 

Here, the mixed optimum,𝑇𝐺𝐶1  and mixed non-optimum 𝑇𝐺𝐶2  estimators are modified to handle the case of 

extreme values on both the study and auxiliary variables. 

 

𝑇𝐺𝐶1 = 2−1𝑦̅𝑐0 {(
𝑋̅

𝑥̅𝑐1
)

𝛼2

+ (
𝑥̅𝑐1
𝑋̅
)
1−𝛼2

} {𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅𝑐1
𝑋̅ + 𝑥̅𝑐1

]} (21) 

 

where 𝛼2 is a constant, −1 ≤ 𝛼2 ≤1   
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𝑇𝐺𝐶1 =

{
 
 
 

 
 
   2−1(𝑦̅ + 𝑐0) {(

𝑋̅

𝑥̅ + 𝑐1
)

𝛼2

+ (
𝑥̅ + 𝑐1

𝑋̅
)
1−𝛼2

} {𝑒𝑥𝑝 [
𝑋̅ − (𝑥̅ + 𝑐1)

𝑋̅ + (𝑥̅ + 𝑐1)
]}   

 2−1(𝑦̅ − 𝑐0) {(
𝑋̅

𝑥̅ − 𝑐1
)

𝛼2

+ (
𝑥̅ − 𝑐1

𝑋̅
)
1−𝛼2

} {𝑒𝑥𝑝 [
𝑋̅ − (𝑥̅ − 𝑐1)

𝑋̅ + (𝑥̅ − 𝑐1)
]}

2−1𝑦̅ {(
𝑋̅

𝑥̅
)

𝛼2

+ (
𝑥̅

𝑋̅
)
1−𝛼2

} {𝑒𝑥𝑝 [
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
]}

 

 

 

 

 

 

(22) 

    

 

𝑇𝐺𝐶2 = 2−1𝑦̅𝑐0 {(
𝑋̅

𝑥̅𝑐1
) + (

𝑥̅𝑐1
𝑋̅
)} {𝑒𝑥𝑝 [

𝑋̅ − 𝑥̅𝑐1
𝑋̅ + 𝑥̅𝑐1

]} 
(23) 

 

 

𝑇𝐺𝐶2 =

{
 
 
 

 
 
   2−1(𝑦̅ + 𝑐0) {(

𝑋̅

𝑥̅ +𝑐1
) + (

𝑥̅ + 𝑐1

𝑋̅
)} {𝑒𝑥𝑝 [

𝑋̅ − (𝑥̅ +𝑐1)

𝑋̅ + (𝑥̅ + 𝑐1)
]}   

  2−1(𝑦̅ − 𝑐0) {(
𝑋̅

𝑥̅ −𝑐1
) + (

𝑥̅ − 𝑐1

𝑋̅
)} {𝑒𝑥𝑝 [

𝑋̅ − (𝑥̅ −𝑐1)

𝑋̅ + (𝑥̅ − 𝑐1)
]}

 2−1𝑦̅ {(
𝑋̅

𝑥̅
) + (

𝑥̅

𝑋̅
)} {𝑒𝑥𝑝 [

𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
]}

 

 

 

 

(24) 

 

To obtain the bias and the 𝑀𝑆𝐸 for  𝑇𝐺𝐶1 and 𝑇𝐺𝐶2, we define the following relative error terms. 

 

𝑦
𝑐𝑜
= 𝑌(1 + 𝑒𝑜) 𝑎𝑛𝑑  𝑥𝑐1 = 𝑋(1 + 𝑒1) (25) 

 

𝐸(𝑒𝑜) = 𝐸(𝑒1) = 0,  𝐸(𝑒0
2) =

𝜃

𝑌
2 (𝑆𝑦

2 −
2𝑛𝑐0

𝑁−1
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 − 𝑛𝑐0)),                       

   𝐸(𝑒1
2) =

𝜃

𝑋
2 (𝑆𝑥

2 −
2𝑛𝑐1

𝑁−1
(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 − 𝑛𝑐1)), and 

 

𝐸(𝑒0𝑒1) =
𝜃

𝑌𝑋
(𝑆𝑦𝑥

2 −
𝑛

𝑁−1
(𝑐1(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑐0(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) − 2𝑛𝑐0𝑐1))           (26)        

 

Applying (25) in (26) gave (27) 

 

𝑇𝑝1 = [𝑌̅ + 𝑌̅𝑒̅0 − 𝛼2𝑌̅𝑒̅1 − 𝛼2𝑌̅ 𝑒̅0 𝑒̅1 +
1

2
(
1

4
+ 𝛼2 + 𝛼2

2) 𝑌̅𝑒̅1
2 ] 

(27) 

 

Subtracting 𝑌̅ from both sides of (27) and taking expectation of both sides, we get the bias of the estimator 𝑇𝐺𝐶1 

 

Bias(𝑇𝐺𝐶1) =𝐸(𝑇𝐺𝐶1 − 𝑌̅) = 𝐸 [𝑌̅𝑒̅0 − 𝛼2𝑌̅𝑒̅1 − 𝛼2𝑌̅  𝑒̅0 𝑒̅1 +
1

2
(
1

4
+ 𝛼2 + 𝛼2

2) 𝑌̅𝑒̅1
2 ] (28) 

 

Applying  (26) in (25), we obtain the bias of 𝑇𝐺𝐶1 

 

 Bias(𝑇𝐺𝐶1) =𝑌̅ [
1

2
(
1

4
+ 𝛼2 + 𝛼2

2)
𝜃

𝑋̅2
 {𝑆𝑥

2 −
2𝑛𝐶1

𝑁−1
(∆𝑥 − 𝑛𝐶1)}  − 𝛼2

𝜃

𝑌̅𝑋̅
{𝑆𝑦𝑥 −

𝑛

𝑁−1
(𝐶1∆𝑦 +

𝐶0∆𝑥) − 2𝑛𝐶0𝐶1} ] 

 

(29) 

Bias(𝑇𝐺𝐶1) =𝑌̅ [
1

2
(
1

4
+ 𝛼2 + 𝛼2

2)
𝜃𝑅2

𝑌̅2
 {𝑆𝑥

2 −
2𝑛𝐶1

𝑁−1
(∆𝑥 − 𝑛𝐶1)}  − 𝛼2

𝜃𝑅

𝑌̅2
{𝑆𝑦𝑥 −

𝑛

𝑁−1
(𝐶1∆𝑦 +

𝐶0∆𝑥) − 2𝑛𝐶0𝐶1} ] 
(30) 

 

Bias(𝑇𝐺𝐶1) =
𝜃𝑅

𝑌̅
[
1

2
𝑅 (

1

4
+ 𝛼2 + 𝛼2

2) {𝑆𝑥
2 −

2𝑛𝐶1

𝑁−1
(∆𝑥 − 𝑛𝐶1)}  − 𝛼2 {𝑆𝑦𝑥 −

𝑛

𝑁−1
(∆𝑦𝐶1 + ∆𝑥𝐶0) −

2𝑛𝐶0𝐶1} ] 
(31) 
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To obtain the MSE of 𝑇𝐺𝐶1, we subtract 𝑌̅ from both sides of (27), retaining terms in first degree of  𝑒’𝑠, 

squaring both sides and then taking expectations of both sides, we have: 

 

MSE(𝑇𝐺𝐶1) = 𝐸(𝑇𝑝1𝑒𝑥 − 𝑌̅)
2
= 𝑌̅2𝐸[𝑒̅0 − 𝛼2𝑒̅1]

2 (32) 

 

𝑀𝑆𝐸(𝑇𝐺𝐶1) = 𝑌̅2𝐸[𝑒̅0
2 + 𝛼2

2𝑒̅1
2 − 2𝛼2𝑒̅0 𝑒̅1] (33) 

 

Substituting equation (26) in (33)  will give: 

 

𝑀𝑆𝐸(𝑇𝐺𝐶1) = 𝑌̅
2 [
𝜃

𝑌̅2
 {𝑆𝑦

2 −
2𝑛𝐶0
𝑁 − 1

(∆𝑦 − 𝑛𝐶0)} +
𝛼2
2𝜃

𝑋̅2
{𝑆𝑥

2 −
2𝑛𝐶1
𝑁 − 1

(∆𝑥 − 𝑛𝐶1)}

−
2𝛼2𝜃

𝑌̅𝑋̅
{𝑆𝑦𝑥 −

𝑛

𝑁 − 1
(∆𝑦𝐶1 + ∆𝑥𝐶0) − 2𝑛𝐶0𝐶1}] 

(34) 
 

𝑀𝑆𝐸(𝑇𝐺𝐶1) = 𝜃 [(𝑆𝑦
2  + 𝛼2

2𝑅2𝑆𝑥
2 − 2𝛼2𝑅𝑆𝑦𝑥) −

2𝑛𝐶0∆𝑦

𝑁 − 1
+
2𝑛𝛼2𝑅𝐶1∆𝑦

𝑁 − 1
+
2𝑛2𝐶0

2 

𝑁 − 1
+
2𝑛𝛼2𝑅𝐶0∆𝑥

𝑁 − 1

−
2𝑛𝛼2

2𝑅2𝐶1∆𝑥

𝑁 − 1
+
2𝑛2𝛼2

2𝑅2𝐶1
2

𝑁 − 1
 −
4𝑛2𝛼2𝑅𝐶0 𝐶1

𝑁 − 1
] 

(35) 

 

𝑀𝑆𝐸(𝑇𝐺𝐶1) = 𝜃 [(𝑆𝑦
2  + 𝛼2

2𝑅2𝑆𝑥
2 − 2𝛼2𝑅𝑆𝑦𝑥)

−
2𝑛

𝑁 − 1
(𝐶0 − 𝛼2𝑅𝐶1){∆𝑦 − 𝛼2𝑅∆𝑥 − 𝑛(𝐶0 − 𝛼2𝑅𝐶1)}] 

   (36) 

 

To obtain the optimum value of 𝐶0 and 𝐶1 we perform partial differential equation of   

(36) w.r.t 𝐶0 and 𝐶1 and equate each to zero 

 

𝐶0 − 𝛼2𝑅𝐶1 =
∆𝑦 − 𝛼2𝑅∆𝑥

2𝑛
 

(37) 

Also,  

 

𝐶0 − 𝛼2𝑅𝐶1 =
∆𝑦 − 𝛼2𝑅∆𝑥

2𝑛
 

(38) 

 

In the attempt to perform partial differentiation on the MSE of 𝑇𝐺𝐶1  with respect to 𝐶0 and 𝐶1,we have one 

equation with two unknowns so unique, solution is not possible, therefore, 

 

𝐶0(𝑜𝑝𝑡) =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

2𝑛
=
∆𝑦

2𝑛
 

 

(39) 

𝐶1(𝑜𝑝𝑡) =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑛
=
∆𝑥

2𝑛
 

 

(40) 

Substitute (39) and (40) into (36), and simplify we obtain  

 

𝑀𝑆𝐸(𝑇𝐺𝐶1)𝑜𝑝𝑡 = 𝜃 [(𝑆𝑦
2  + 𝛼2

2𝑅2𝑆𝑥
2 − 2𝛼2𝑅𝑆𝑦𝑥)

−
2𝑛

𝑁 − 1
(
∆𝑦

2𝑛
− 𝛼2𝑅

∆𝑥

2𝑛
) {∆𝑦 − 𝛼2𝑅∆𝑥 − 𝑛 (

∆𝑦

2𝑛
− 𝛼2𝑅

∆𝑥

2𝑛
)}] 

(41) 

  

𝑀𝑆𝐸(𝑇𝐺𝐶1)𝑜𝑝𝑡 = 𝜃 [(𝑆𝑦
2  + 𝛼2

2𝑅2𝑆𝑥
2 − 2𝛼2𝑅𝑆𝑦𝑥) − {

(∆𝑦 − 𝛼2𝑅∆𝑥)
2

2(𝑁 − 1)
 }] 

          (42) 

 

2.3.1 Special cases of the proposed estimator TGC1 

 

From (42) we try to investigate different common scenarios for the value of 𝛼2  
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Case (I): 𝛼2 = −1,   

 

𝑀𝑆𝐸(𝑦̅𝑃𝐶)𝑜𝑝𝑡 = [𝜃𝑌̅
2{𝐶𝑦

2  + 𝐶𝑥
2 + 2𝐶𝑦𝐶𝑥𝜌𝑦𝑥} − 𝜃 {

(∆𝑦 + 𝑅∆𝑥)2

2(𝑁 − 1)
 }] (43) 

 

𝑀𝑆𝐸(𝑦̅𝑃𝐶)𝑜𝑝𝑡 = [MSE(𝑦̅𝑃) − {
𝜃(∆𝑦 + ∆𝑥)2

2𝑅(𝑁 − 1)
 }] (44) 

 

 

Therefore, equation (44) gives the MSE (𝑦̅𝑃𝐶)  of the product corrected  estimator (𝑦̅𝑃𝐶) in the presence of 

outliers and can be used when the correlation between the study variable and auxiliary variable is  less than zero 

and the lines passes through the origin 

 

Case (II): 𝛼2 = 0 

 

𝑉(𝑦̅𝑠) = 𝜃 [𝑌̅
2𝐶𝑦

2 − {
(∆𝑦)2

2(𝑁 − 1)
 }] (45) 

 

Also, equation (45) is the sample variance for the correction of the  sample mean estimator (𝑦̅𝑠)  when there 

are outliers in the data and suitable when the correlation between the study variable and auxiliary variable is 

zero 

                     

                       

   𝑉(𝑦̅𝑠) = [𝑉(𝑦̅) − {
𝜃(∆𝑦)2

2(𝑁−1)
 }]      (46) 

 

 

  

   

Case (III): 𝛼2 = 1,  

 

𝑀𝑆𝐸(𝑦̅𝑅𝐶) = [𝜃𝑌̅
2{𝐶𝑦

2  + 𝐶𝑥
2 − 2𝐶𝑦𝐶𝑥𝜌𝑦𝑥} − 𝜃 {

(∆𝑦 − 𝑅∆𝑥)2

2(𝑁 − 1)
 }]     (47) 

 

More so, equation (47) is the MSE (𝑦̅𝑅𝐶) of the ratio corrected estimator (𝑦̅𝑅𝐶) when there are outliers and is 

applicable when the correlation between the study variable and auxiliary variable is greater than zero and the 

line passes through the origin.   

         

𝑀𝑆𝐸(𝑦̅𝑅𝐶) = [MSE(𝑦̅𝑅) − 𝜃 {
(∆𝑦 − 𝑅∆𝑥)2

2(𝑁 − 1)
 }] (48) 

 

Case (Iv): 𝛼2 =
𝐶𝑦𝜌𝑦𝑥

𝐶𝑥
 

 

𝑀𝑆𝐸(𝑅𝑒𝑔. ) = [𝜃{𝑌̅2𝐶𝑦
2  + 𝑌̅2𝐶𝑦

2𝜌𝑦𝑥
2 − 2𝑌̅2𝐶𝑦

2𝜌𝑦𝑥
2 } − 𝜃 {

(∆𝑦 − 𝛽∆𝑥)2

2(𝑁 − 1)
 }] 

 

 

(49) 

 

where:𝛽 =
𝑺𝑦𝜌𝑦𝑥

𝑆𝑥
 

 

𝑀𝑆𝐸(𝑦̅𝑅𝑒𝑔.) = [𝑌̅2𝐶𝑦
2(1 − 𝜌𝑦𝑥

2 ) − 𝜃 {
(∆𝑦 − 𝛽∆𝑥)2

2(𝑁 − 1)
 }] 

 

(50) 

  

𝑀𝑆𝐸(𝑦̅𝑅𝑒𝑔.) = [𝑉(𝑦̅𝐿𝑅) − 𝜃 {
(∆𝑦 − 𝛽∆𝑥)2

2(𝑁 − 1)
 }] 

 

(51) 

 

Lastly, equation (51) is the 𝑀𝑆𝐸(𝑦̅𝑅𝑒𝑔.)  of the regression estimator ( 𝑦̅𝑅𝑒𝑔.)  and is applicable when the 

correlation between the variables is linear and negative or positive, and the line does not pass through the origin.  
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Similarly, for the second proposed estimator, applying (25) in (23) we obtained. 

 

𝑇𝑝2 = [𝑌̅ + 𝑌̅𝑒̅0 −
1

2
𝑌̅𝑒̅1 −  

1

2
𝑌̅𝑒̅0 𝑒̅1 +

7

8
𝑌̅ 𝑒̅1

2] 
(52) 

 

Subtracting 𝑌̅ from both sides of (52) and taking expectation of both sides, we get the bias of the estimator 𝑇𝐺𝐶2 

 

Bias(𝑇𝐺𝐶2) =  𝐸(𝑡𝑝2 − 𝑌) = 𝐸 [𝑌̅𝑒̅0 −
1

2
𝑌̅𝑒̅1 −  

1

2
𝑌̅𝑒̅0 𝑒̅1 +

7

8
𝑌̅ 𝑒̅1

2] (53) 

                

Applying  (26) in (53), we obtained the bias of 𝑇𝐺𝐶1 

 

Bias(𝑇𝐺𝐶2) = 𝑌̅ [
7𝜃

8𝑋̅2
{𝑆𝑥

2 −
2𝑛𝐶1

𝑁−1
(∆𝑥 − 𝑛𝐶1)} −

𝜃

2𝑌̅𝑋̅
{𝑆𝑦𝑥 −

𝑛

𝑁−1
(∆𝑦𝐶1 +

∆𝑥𝐶0) − 2𝑛𝐶0𝐶1} ] 

 

 

(54) 

   

    Bias(𝑇𝐺𝐶2) =
𝜃

𝑋̅
[
7𝑌̅

8𝑋̅
𝑋̅2𝐶𝑥

2 −
1

2
𝑌̅𝐶𝑥𝑋̅ 𝐶𝑦𝜌𝑦𝑥 +

𝑛

2(𝑁−1)
{
𝑛𝐶0∆𝑥

2(𝑁−1)
−

14𝑛𝑌̅𝐶1∆𝑥

8𝑋̅(𝑁−1)
−

2𝑛2𝐶0𝐶1

2(𝑁−1)
+

14𝑛2𝑌̅𝐶1
2

8𝑋̅(𝑁−1)
+

𝑛∆𝑦𝐶1

2(𝑁−1)
}] 

 

 

(55) 

  

    Bias(𝑇𝐺𝐶2) = [𝑌̅ (
7

8
𝜃𝐶𝑥

2 −
1

2
𝐶𝑦𝐶𝑥  𝜌𝑦𝑥) +

𝑛𝜃

2𝑋̅(𝑁−1)
{(𝐶0 −

7𝑌̅𝐶1

2𝑋̅
) ∆𝑥 −

(2𝐶0 +
7𝑌̅𝑛𝐶1

2𝑋̅
) 𝑛𝐶1 + 𝐶1∆𝑦}] 

 

 

(56) 

 

To obtain the MSE of 𝑇𝐺𝐶2, we subtract 𝑌̅ from both sides of (52),retaining terms in first degree of  𝑒’𝑠, 

squaring both sides and then taking expectations of both sides, we have: 

 

𝑇𝐺𝐶2 = [𝑌̅ + 𝑌̅𝑒̅0 −
1

2
𝑌 ̅𝑒̅1 −  

1

2
𝑌̅𝑒̅0 𝑒̅1 +

7

8
𝑌̅ 𝑒̅1

2] 
(57) 

 

MSE(𝑇𝐺𝐶2) = 𝐸(𝑡𝑝2 − 𝑌̅)
2
= 𝐸 [𝑌̅𝑒̅0 −

1

2
𝑌̅𝑒̅1]

2

 

(58) 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝑌̅
2𝐸 [𝑒̅0

2 +
1

4
𝑒̅1
2 −

1

2
(2𝑒̅0𝑒̅1)] 

(59) 

Let  
1

2
= 𝑎 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝑌̅2𝐸[𝑒̅0
2 + 𝑎2𝑒̅1

2 − 2𝑎𝑒̅0𝑒̅1] 
(60) 

 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝑌̅
2𝐸 [

𝜃

𝑌̅2
 {𝑆𝑦

2 −
2𝑛𝐶0
𝑁 − 1

(∆𝑦 − 𝑛𝐶0)}

+
𝑎2𝜃

𝑋̅2
{𝑆𝑥

2 −
2𝑛𝐶1
𝑁 − 1

(∆𝑥 − 𝑛𝐶1)}

−
2𝑎𝜃

𝑌̅𝑋̅
{𝑆𝑦𝑥 −

𝑛

𝑁 − 1
(∆𝑦𝐶1 + ∆𝑥𝐶0) − 2𝑛𝐶0𝐶1})] 

(61) 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝜃 [(𝑆𝑦
2  + 𝑎2𝑅2𝑆𝑥

2 − 2𝑎𝑅𝑆𝑦𝑥) −
2𝑛𝐶0∆𝑦

𝑁 − 1
+
2𝑛𝑎𝑅𝐶1∆𝑦

𝑁 − 1

+
2𝑛𝑎𝑅𝐶0∆𝑥

𝑁 − 1
−
2𝑛𝑎2𝑅2𝐶1∆𝑥

𝑁 − 1
+
2𝑛2𝐶0

2 

𝑁 − 1

+
2𝑛2𝑎2𝑅2𝐶1

2

𝑁 − 1
 −
4𝑛2𝑎𝑅𝐶0 𝐶1
𝑁 − 1

] 

 

(62) 
 

      (63) 
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𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝜃 [(𝑆𝑦
2  + 𝑎2𝑅2𝑆𝑥

2 − 2𝑎𝑅𝑆𝑦𝑥)

−
2𝑛

𝑁 − 1
(𝐶0 − 𝑎𝑅𝐶1){∆𝑦 − 𝑎𝑅∆𝑥 − 𝑛(𝐶0 − 𝑎𝑅𝐶1)}] 

 

But 

 

𝐶0(𝑜𝑝𝑡) =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

2𝑛
=
∆𝑦

2𝑛
 

 

(64) 
 

𝐶1(𝑜𝑝𝑡) =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

2𝑛
=
∆𝑥

2𝑛
 

 

(65) 

Substitute (64) and (65) into (63) and simplify, we obtained 

 

𝑀𝑆𝐸(𝑇𝑝2𝑒𝑥) = 𝜃 [{𝑆𝑦
2  + 𝑎2𝑅2𝑆𝑥

2 − 2𝑎𝑅𝑆𝑦𝑥}

−
2𝑛

𝑁 − 1
(
∆𝑦

2𝑛
− 𝑎𝑅

∆𝑥

2𝑛
) {∆𝑦 − 𝑎𝑅∆𝑥 − 𝑛 (

∆𝑦

2𝑛
−
𝑎𝑅∆𝑥

2𝑛
)}] 

(66) 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝜃 [{𝑆𝑦
2  + 𝑎2𝑅2𝑆𝑥

2 − 2𝑎𝑅𝑆𝑦𝑥} − {
(∆𝑦 − 𝑎𝑅∆𝑥)2

2(𝑁 − 1)
 }] 

(67) 

But 𝑎 =
1

2
 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = 𝜃 [𝑌̅
2 {𝐶𝑦

2  +
1

4
𝐶𝑥
2 − 𝐶𝑦𝐶𝑥𝜌𝑦𝑥} − {

(2∆𝑦 − 𝑅∆𝑥)2

8(𝑁 − 1)
 }] 

(68) 

 

 

𝑀𝑆𝐸(𝑇𝐺𝐶2) = [𝑀𝑆𝐸(𝑇𝐸𝑅) − 𝜃 {
(2∆𝑦 − 𝑅∆𝑥)2

8(𝑁 − 1)
 }] 

(69) 

        

 The MSE of (69) has a correction factor of the ratio exponential estimator and it can be used for the correction 

of the exponential ratio estimator in when there are outliers in the data.   

  

3 Results and Discussion  
 

3.1 Comparison of estimators 
 

3.1.1 Comparison with the generalized proposed (mixed optimum) estimator   

 

(a) Comparison of proposed estimator 𝑇𝑅𝐶  type Estimator 

(i) Mean Per Unit Estimator [(5) and (48)] 

 

𝑉(𝑦̅) − 𝑀(𝑇𝑅𝐶) > 0 or if 

 

𝜌𝑦𝑥 >
1

2
[
𝑅𝑆𝑥
𝑆𝑦

−
(∆𝑦 − 𝑅∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
] (70) 

 

The corrected ratio estimator of (48) is more efficient than mean per unit estimator given in (5) 
 

(ii) Usual ratio estimator [(8) and (48)] 

 

𝑀(𝑦̅𝑅) − 𝑀(𝑇𝑅𝐶) > 0 or if 
  

(∆𝑦 − 𝑅∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
> 0 (71) 
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The corrected ratio estimator of (48) is more efficient than its contemporary ratio estimator of (8). 
 

(iii) Usual exponential ratio estimator [(16) and (48)] 

𝑀 
(𝑦̅𝐸𝑅) − 𝑀(𝑇𝑅𝐶) > 0 or if 

       

𝜌𝑦𝑥 > −
1

2
[
5𝑅𝑆𝑥
2𝑆𝑦

+
(∆𝑦 − 𝑅∆𝑥)2

𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
] 

         (72) 
 

 

 

Estimator (48) is more efficient than estimator(16) 
 

(b) Comparison of proposed estimator 𝑇𝑃𝐶  type Estimator  

 

Also, we compare the efficiency of the corrected product estimator with its usual counterpart.  

 

(i) Mean Per Unit Estimator [(5) and (44) 

 

𝑉(𝑦̅) − 𝑀(𝑇𝑃𝐶) > 0 or if 

 

𝜌𝑦𝑥 >
1

2
[
𝑅𝑆𝑥
𝑆𝑦

−
(∆𝑦 + 𝑅∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
] (73) 

  

The corrected product estimator of (44) is more efficient than the mean per unit estimator. 

 

(ii) Usual product estimator [(11) and (44)] 

 

𝑀(𝑦̅𝑃) − 𝑀(𝑇𝑃𝐶) > 0 or if 

 
(∆𝑦 + 𝑅∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
> 0 (74) 

 

Corrected product estimator of (44) is more efficient than it product counterpart of (11) 
 

(iii) Usual exponential product estimator [(16) and (44)] 

 

𝑀(𝑦̅𝐸𝑃) − 𝑀(𝑇𝑃𝐶) > 0 or if 

 

𝜌𝑦𝑥 > −
1

2
[
5𝑅𝑆𝑥
2𝑆𝑦

+
(∆𝑦 + 𝑅∆𝑥)2

𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
] 

  

(75) 

The corrected exponential product estimator of(44) is more efficient than the usual product estimator of (16)    
   

   (c) Comparison of proposed estimator 𝑇𝑅𝑒𝑔  type Estimator [(5) and (51)] 

 

(i) Mean Per Unit Estimator 

 

𝑉(𝑦̅) − 𝑉(𝑦̅𝑙𝑟𝑐) > 0 or if 

 

𝜌𝑦𝑥
2 > −

(∆𝑦 − 𝛽∆𝑥)2

2𝑆𝑦𝑥
2 (𝑁 − 1)

 (76) 

From (74) it is obvious that the regression estimator of  (51) is more efficient than the mean per unit estimator 

of (5) 
 

(iv) Usual regression estimator [(14) and (51)] 
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𝑉(𝑦̅𝑙𝑟) − 𝑉(𝑦̅𝑙𝑟𝑐) > 0 or if 

 
(∆𝑦 − 𝛽∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
> 0 

 

(77) 

It is showed that the corrected regression estimator of (51) is more efficient than the usual regression estimator 

of (14) 
 

3.1.2 Comparison with the mixed non-optimum estimator 

 

(a) comparison of proposed estimator 𝑇𝐺𝐶2 

 

(i) Mean Per Unit Estimator [(5) and (69)] 

 

𝑉(𝑦̅) − 𝑀(𝑇𝐺𝐶2) > 0 or if 

 

𝜌𝑦𝑥 >
1

4
[
𝑅𝑆𝑥
𝑆𝑦

−
(2∆𝑦 − 𝑅∆𝑥)2

2𝑅𝑆𝑦𝑆𝑥(𝑁 − 1)
] (78) 

 

It is clear from (76) that corrected exponential ratio estimator is more efficient than the exponential ratio 

estimator. 

 

(ii) Usual exponential ratio [(16) and (69)] 

 

𝑀(𝑦̅𝐸𝑅) − 𝑀(𝑇𝐺𝐶2) > 0 or if 

 
(2∆𝑦 − 𝑅∆𝑥)2

8𝑅(𝑁 − 1)
> 0 

 

(79) 

The corrected exponential ratio estimator of (69) is more efficient than the usual exponential ratio estimator of 
(16). 
 

3.2 Numerical Illustration 
 

The Percent Relative Efficiency (PRE) is a statistical tool that will be used to measure the efficiency of 

estimators. Thus,  

 

PRE =
𝑉𝑎𝑟 ( 𝑦̅)

𝑉𝑎𝑟 ( 𝑦̅∗) or 𝑀𝑆𝐸(𝑦̅∗)
 𝑋 100 

 

for  ∗=1,2,3,4,5,6,7,8,9,10 and 𝑦̅1 = 𝑦̅ ,  𝑦̅2 = 𝑦̅𝑅 ,𝑦̅3 = 𝑦̅𝑃, 𝑦̅4 = 𝑦̅𝐸𝑅  ,𝑦̅5 = 𝑦̅𝐸𝑃, 𝑦̅6 = 𝑦̅𝑙𝑟,  

𝑦̅7 = 𝑦̅𝑅𝐶 ,    𝑦̅8 = 𝑦̅𝑃𝐶 ,   𝑦̅9 = 𝑦̅𝑙𝑟𝐶 , 𝑦̅10 = 𝑦̅𝐸𝑅𝐶   

 

Table 1 shows the data that is used to assess the efficiency of the estimators discuss above.  

 

Table 1. Data sets for the empirical study 

 
Parameter Population I Population II Population III Population IV 

N 27 34 49 36 

𝑛 12 12 12 12 

𝑌̅ 11.25185 199.441 127.7959 14.77778 

𝑋̅ 10.41111 208.882 103.1429 2.798333 

𝑦𝑚𝑎𝑥 14.8 634 634 33 

𝑦𝑚𝑖𝑛 7.9 6 46 6 

𝑥𝑚𝑎𝑥 14.5 564 507 3.82 

𝑥𝑚𝑖𝑛 6.5 5 2 1.81 
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Parameter Population I Population II Population III Population IV 

𝑆𝑦 2.025586 150.215 123.1212 6.1788 

𝑆𝑥 2.220586 150.506 104.4051 0.5919 

𝑆𝑦𝑥 4.454 22158.05 12619.78 −2.477 

𝜌𝑦𝑥 0.990 0.980 0.98 −0.6772 

Source: Khan and Shabbir (2013) 

    

Table 2 below is the population description of the data of Table 1, it states the study variable and the auxiliary 

variable   

 

Table 2. Population description 

 
Variable Population I Population II Population III Population IV 

𝑦 Milk yield in kg after 

new food 

Area under wheat crop in 

1964 

Population size in 

1930 (in 1000) 

Weekly time (hours) 

spent in nonacademic 

activities 

𝑥 Yield in kg 

Before new yield 

Area under wheat crop in 

1963. 

Population size in 

1920 (in 1000). 

Overall grade point 

average (4.0 bases). 
Source: Khan and Shabbir (2013) 

 

 The efficiency of the proposed estimators and its contemporary is showed in Table 3 below:  

 

Table 3. Percentage relative efficiency of different estimators with respect to mean per unit estimator 

 
 Population I Population II Population III Population IV 

Estimator MSE PRE MSE PRE MSE PRE MSE PRE 

𝑦̅ 0.189956 100.00 1216.716 100.00 953.872 100.00 2.12098 100.00 

𝑦̅𝑅 0.010895 1743.56 48.6438 2501.28 39.0462 2442.93 4.11721 51.5149 

𝑦̅𝑃 0.902317 21.0521 4611.82 26.3825 3974.67 23.9988 1.21035 175.236 

𝑦̅𝐸𝑅 0.033763 562.615 354.300 343.414 233.212 409.014 2.98339 71.0928 

𝑦̅𝐸𝑃 0.479474 39.6176 2635.89 46.1596 2201.02 43.3376 1.52996 138.629 

𝑦̅𝑙𝑟 0.003780 5025.13 48.1819 2525.25 37.7733 2525.25 1.14830 184.706 

𝑦̅𝑅𝐶  0.008180 2322.06 41.3840 2940.07 38.1144 2502.66 3.90413 54.3265 

𝑦̅𝑃𝐶 0.899603 21.1156 4604.56 26.4241 3973.74 24.0044 0.997275 212.677 

𝑦̅𝑙𝑟𝐶 0.003686 5152.93 42.7899 2843.46 37.7607 2526.09 1.01845 208.255 

𝑦̅𝐸𝑅𝐶 0.027851 682.052 247.751 491.105 183.589 519.569 2.60992 81.2659 

 

The analysis reveals a significant improvement in the precision of estimators that incorporate   a correction 

factor for outliers, compared to their standard counterparts that do not account for such adjustments.  

 

From Table 3, in the first population, the estimators that uses an outlier correction factor  𝑦̅𝑅𝐶 , 𝑦̅𝑃𝑐, 𝑦̅𝑙𝑟𝐶 , 𝑦̅𝐸𝑅𝐶   

demonstrated it efficiency over the conventional estimators 𝑦̅𝑅 , 𝑦̅𝑃 ,  𝑦̅𝑙𝑟 , 𝑦̅𝐸𝑅   that do not incorporate such 

adjustments respectively. Also, in population I, II and III estimators 𝑦̅𝑅𝐶  and 𝑦̅𝐸𝑅𝐶   performed better than 𝑦̅𝑃𝐶, 

while in population IV 𝑦̅𝑃𝐶  established it superiority over others estimators. But it is obvious that estimator 𝑦̅𝑙𝑟𝐶  

adapted well in all the four populations considered in this study.  

 

4 Conclusions and Recommendations 
 

In this study a generalized estimator under maximum and minimum values using auxiliary variable was 

developed that yielded the mean squared error for the correction of the conventional estimators when there are 

outliers in both the study and auxiliary variable. From the analysis, it can be observed that the ratio and 

exponential ratio corrected estimator performed better when there is positive correlation between the study 

variable and the auxiliary variable, while the product exhibited superior performance in the case of negative 

correlation. The regression estimator, is more flexible and performed well for both positive and negative 

correlations. Consequently, careful selection of the constant is essential, which depends on the nature of the 

data. Specifically, when the correlation is negative and the regression line passes through the origin 𝛼2 equal -1; 

when there is no correlation  𝛼2 equals 0 ; when the correlation is positive and the line passes through the origin 

𝛼2 equals 1 and when correlation is either positive or negative but the line does not pass through the origin 𝛼2 is 
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given by   𝛼2 =
𝐶𝑦𝜌𝑦𝑥

𝐶𝑥
., which is known as the regression coefficient. Therefore, the generalized estimator which 

accounts for the correction of extreme values demonstrated greater efficiently compared to the conventional 

ratio, product, sample mean and regression estimators for the different values of the constant.  

 

Thus, the proposed estimators offer significant advantages over traditional methods for practical applications. 

Their versatility and ability to encompass various known estimators through appropriate adjustment of the 

constant make them adaptable to different data conditions, enhancing their overall utility. 
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