
*Corresponding author: Email: obike.peter@mouau.edu.ng;

Cite as: Obike, Peter G., Okure U. Obot, and Victor E. Ekong. 2024. “Feature Engineering for Agile Requirement Management
Using Semantic Analysis”. Journal of Engineering Research and Reports 26 (9):287-304.
https://doi.org/10.9734/jerr/2024/v26i91280.

Journal of Engineering Research and Reports

Volume 26, Issue 9, Page 287-304, 2024; Article no.JERR.123141
ISSN: 2582-2926

Feature Engineering for Agile
Requirement Management Using

Semantic Analysis

Peter G. Obike a*, Okure U. Obot b and Victor E. Ekong b

a Michael Okpara University of Agriculture, Umudike, Nigeria.
b University of Uyo, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final

manuscript.

Article Information

DOI: https://doi.org/10.9734/jerr/2024/v26i91280

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/123141

Received: 13/07/2024
Accepted: 15/09/2024
Published: 19/09/2024

ABSTRACT

Efficient management and prioritization of software requirements are critical challenges in agile
projects, where requirements constantly evolve due to changing user needs, business goals, and
regulatory updates. This paper explores the role of semantic feature extraction in enabling adaptive
management strategies. Using the PROMISE Expanded Dataset and the Coquina Dataset, we
employed TF-IDF weighted Word2Vec for advanced tokenization and feature extraction. Latent
Dirichlet Allocation (LDA) was used to analyze how preprocessing steps like stop word removal
impact topic representation, revealing that removing stop words improved topic specificity and
coherence. To address class imbalance, Synthetic Minority Over-sampling Technique (SMOTE)
was applied, enhancing the model's ability to handle underrepresented classes effectively. Principal
Component Analysis (PCA) reduced the dimensionality of TF-IDF weighted Word2Vec embeddings

Original Research Article

https://doi.org/10.9734/jerr/2024/v26i91280
https://www.sdiarticle5.com/review-history/123141

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

288

from 100 features to 30, while Analysis of Variance (ANOVA) identified the most significant features
for classification. The results obtained identified three features to have p-values below 0.05 as
statistically significant, p-value = 0.0000605, p-value = 0.00000000469, and p-value = 0.0024.
These extracted features could be used as input to training machine learning models for predicting
and managing software requirements adaptively during agile development. With the reduction of
ambiguities and sentiments of the user at the requirement phase, the development phase could be
undertaken seamlessly with ease.

Keywords: Semantic Analysis; software requirements; natural language processing (NLP) techniques;

latent dirichlet allocation (LDA).

1. INTRODUCTION

Effective requirement management and
prioritization are fundamental to agile software
development. Agile methodologies emphasize
iterative progress and flexibility, making it
essential to have robust systems for handling
requirements. This paper explores the use of
semantic analysis and adaptive management
strategies to improve the classification and
prioritization of requirements. We leverage the
PROMISE Expanded Dataset and the Coquina
Dataset to demonstrate our approach. The main
objective of this research is to highlight the
pivotal role of semantic feature extraction in
enabling adaptive management strategies within
machine learning models for agile software
development. This research focuses on
enhancing the accuracy and adaptability of
managing changing software requirements by
leveraging advanced feature extraction
techniques. The specific objectives are to:

a. Utilize historical data from the
PROMISE_exp repository and past
software projects from Coquina Software
Company Limited to identify patterns and
trends related to requirement changes in
agile environments.

b. Carry out Data exploration of the datasets.
c. Extract some features of the datasets

using extraction techniques, including TF-
IDF weighted Word2Vec and Latent
Dirichlet Allocation (LDA), to improve the
representation and analysis of requirement
text.

d. Perform feature selection on the datasets.

2. LITERATURE REVIEW

In recent years, the development of adaptive
management strategies for agile requirements
has gained increasing attention, with a particular
focus on semantic feature extraction. This
domain encompasses a variety of natural

language processing (NLP) techniques, such as
stop word removal, Latent Dirichlet Allocation
(LDA), sentiment analysis, and various text
representation methods including Bag of Words,
TF-IDF, Word2Vec, and embeddings. This
literature review integrates and synthesizes
recent research findings to provide a
comprehensive understanding of these
techniques, identify existing knowledge gaps,
and propose future research directions.

A foundational NLP technique is stop word
removal, which involves eliminating commonly
used words (e.g., "the," "is," "and") to focus on
more meaningful content. Research by Abbas et
al. [1] explores the relationship between
requirements similarity and software similarity,
emphasizing the importance of effective feature
extraction techniques like stop word removal in
understanding requirements within agile
environments. The removal of stop words
improves the quality of feature engineering,
allowing for more insightful semantic analysis.

Latent Dirichlet Allocation (LDA) has emerged as
a powerful tool for uncovering hidden thematic
structures within a corpus. Bing and Xiuwen [2]
highlight the potential of deep learning models
such as NFRNet for classifying non-functional
requirements (NFRs), suggesting the use of LDA
and word embeddings to enhance feature
extraction in agile requirements management.
Similarly, Asad and Muqeem [3] proposed that
advanced feature engineering methods like LDA
can better capture the dynamic nature of
requirements in agile development.

Sentiment analysis, a technique used to extract
subjective information from text, is also relevant
in the context of adaptive management
strategies. Franch et al. [4] present a vision for
data-driven requirements engineering,
emphasizing the need for integrating sentiment
analysis with feature engineering to optimize the
management of requirements. The application of

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

289

sentiment analysis offers deeper insights into
user feedback and prioritization, particularly in
agile settings where requirements frequently
evolve.

To represent text data effectively, Bag of Words
and TF-IDF are fundamental techniques in
feature extraction. Canedo and Mendes [5]
provide a comparative study of machine learning
algorithms for classifying software requirements,
highlighting TF-IDF's effectiveness in managing
agile requirements. The TF-IDF model
emphasizes the importance of specific terms
within a document, which is critical for feature
extraction in requirement management.

Word2Vec, a model designed to generate word
embeddings that capture semantic meaning,
complements these text representation
techniques. Research by Kurtanović and Maalej
[6] demonstrates the potential of machine
learning models, such as Word2Vec, in
classifying functional and non-functional
requirements. The integration of Word2Vec with
TF-IDF balances semantic context with term
importance, enhancing feature extraction in agile
requirements management.

Deep learning methods continue to advance
feature extraction techniques. Navarro-Almanza
et al. [7] propose the use of deep learning for
software requirements classification, reinforcing
the role of semantic analysis and feature
engineering in improving the accuracy of agile
requirement management. Yang et al. [8] further
explored clustering user stories in agile
development, showcasing how semantic analysis
can enhance the categorization and
management of dynamic requirements.

This exploration of NLP techniques, deep
learning models, and their applications in
adaptive management strategies underscores
the importance of continued research and
development in this evolving field. By integrating
these methods, researchers and practitioners
can improve the management of agile
requirements, addressing challenges posed by
the dynamic nature of software development
environments.

3. RESEARCH METHODOLOGY

The methodology involves preliminary data
processing with topic modeling to evaluate the
impact of stop word removal, followed by feature

extraction using weighted TF-IDF and Word2Vec
embeddings, and feature selection using PCA
and ANOVA.

3.1 Promise Expanded Dataset

The Promise Expanded Dataset is a collection of
software development requirements in various
NASA software projects. It comprises 969
instances with clearly defined attributes,
including Project ID, Requirement Text, and
Requirement Type.

The PROMISE Expanded Dataset consists of
969 instances with three key attributes:

Project ID: Identifies the project.

Requirement Text: Textual representation of the
requirements.

Requirement Type: Categorizes the
requirements into Functional and Non-Functional
types, with specific categories like Performance,
Usability, and Security.

To better understand the dataset, we conducted
an initial exploration, focusing on the distribution
and characteristics of the Requirement Type
attribute. Fig. 1 shows a bar plot visualizing the
class distribution in the Promise expanded
dataset.

The bars in Fig. 1 represent the distribution of
various requirement types with their respective
sample counts. The Functional Requirements (F)
category has the tallest bar, indicating its
significant dominance in the dataset. In contrast,
the other bars represent different Non-Functional
Requirement (NFR) categories, each with much
smaller counts compared to the functional
category.

This figure demonstrates the dataset's
imbalance, with Functional Requirements (F)
being overwhelmingly prevalent, while
several Non-Functional Requirement (NFR)
categories, such as Security (SE) and Usability
(US), have relatively more presence compared to
others like Fault Tolerance (FT) and Portability
(PO).

A categorization of the dataset into Functional
and Non-Functional Requirements is presented
in Table 1.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

290

Fig. 1. Promise expanded dataset class distribution

Table 1. Distribution of Requirement Types in Promise Expanded Dataset

Requirement Type Count

Functional (F) 444
Availability (A) 31
Legal (L) 15
Look-and-feel (LF) 49
Maintainability (MN) 24
Operability (O) 77
Performance (PE) 67
Scalability (SC) 22
Security (SE) 125
Usability (US) 85
Fault Tolerance (FT) 18
Portability (PO) 12

This dataset's structured framework and labeled
nature makes it suitable for supervised learning
approaches.

3.1.1 Balancing the promise expanded
dataset with SMOTE

In addressing the class imbalance present in the
Promise Expanded Dataset, we employed the
Synthetic Minority Over-sampling Technique
(SMOTE) to enhance the representation of the
minority class. The original dataset comprised
969 samples with 2113 features, where the
distribution of classes was significantly skewed.
This imbalance posed a challenge for effective
model training, as classifiers tend to be biased
towards the majority class, leading to
suboptimal performance in predicting the minority
class.

To mitigate this issue, we implemented SMOTE,
which generates synthetic samples for the

minority class by interpolating between existing
minority class instances. Specifically, for each
minority class sample, SMOTE identifies its k-
nearest neighbors (in our case, k=5)
and creates new synthetic examples
along the line segments connecting the minority
sample to its neighbors. This approach not only
increases the number of minority class samples
but also helps in expanding the decision
boundary, allowing the classifier to generalize
better.

After applying SMOTE, the dataset was
resampled to a total of 5328 samples while
maintaining the original feature dimensionality of
2113. The resampling process effectively
balanced the class distribution, providing a more
equitable representation of both classes. The
resulting feature matrix is summarized in Table 2,
which presents the shape of the original and
resampled datasets.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

291

Table 2. Dataset Shapes Before and After
SMOTE

Dataset Number
of
Samples

Number of
Features

Original Dataset 969 2
Resampled Dataset 5328 2

The resampled dataset was then subjected to
Principal Component Analysis (PCA) to reduce
its dimensionality for visualization and further
analysis. The PCA transformation yielded a new
shape of (5328, 2), allowing us to visualize the
distribution of the samples in a two-dimensional
space.

Table 3 presents the PCA transformed
data, with each sample's index and its
corresponding values for the two principal
components.

Table 4 presents a sample of the PCA
transformed data after applying SMOTE to the
Promise Expanded Dataset. Each row
corresponds to a synthetic sample generated by
SMOTE, which has been transformed into a two-
dimensional space using Principal Component
Analysis (PCA). This transformation reduces the
dimensionality of the dataset while preserving
variance, facilitating easier visualization and
analysis of the data distribution. The two principal
components (PC1 and PC2) capture the most
significant directions of variance, summarizing
the information from the original high-
dimensional feature space.

The values in the table illustrate the positioning
of synthetic samples created by SMOTE in this
reduced feature space. By generating synthetic
examples that lie between existing minority class
samples, SMOTE fosters a more balanced
representation of the minority class. This balance
is crucial for improving classifier performance, as
it enables them to learn from a richer set of
examples, thereby enhancing their ability to

generalize and accurately predict outcomes for
the minority class.

The results of the PCA transformation are
presented in Table 4.

The application of SMOTE not only addressed
the class imbalance but also facilitated the
generation of a more robust training dataset. This
enhancement is crucial for improving the
sensitivity and specificity of classifiers,
particularly in scenarios where the minority class
is of significant interest, such as in medical
diagnosis or fraud detection.

To further illustrate the effectiveness of SMOTE,
we provide a scatter plot of the PCA-transformed
data, which visually represents the distribution of
the samples across the two principal
components. Fig. 2 highlights the improved
separation between the classes after applying
SMOTE.

The integration of SMOTE into the preprocessing
pipeline has proven to be a valuable strategy for
balancing the Promise Expanded Dataset,
thereby enhancing the overall performance of
subsequent machine learning models. The
results underscore the effectiveness of SMOTE
in creating a balanced dataset that supports the
development of more accurate predictive models.

3.1.2 Expected table result after applying
SMOTE

Applying SMOTE results in a balanced dataset
with a more uniform distribution across the
requirement types, allowing for more accurate
and reliable classification models. The
distribution table of the dataset after applying
SMOTE is shown in Table 5.

By applying SMOTE, each requirement type is
adjusted to have an equal count of 444, aligning
the dataset for better performance in training
supervised learning models and reducing biases
associated with class imbalance.

Table 3. Sample of PCA Transformed Data

Sample Index Principal Component 1 Principal Component 2

1 0.04535025 0.05334709
2 0.00410043 -0.02551591
3 0.03961297 0.00944405
4 0.23413237 0.07706761
5 0.05658175 0.03019585

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

292

Table 4. PCA Transformed Dataset Shape

Transformed Dataset Number of Samples Number of Features

PCA Transformed Data 5328 2

Fig. 2. Scatter Plot of PCA-Transformed Data

Table 5. Distribution of Requirement Types After Applying SMOTE

Requirement Type Count

Functional (F) 444

Availability (A) 444

Legal (L) 444

Look-and-feel (LF) 444

Maintainability (MN) 444

Operability (O) 444

Performance (PE) 444

Scalability (SC) 444

Security (SE) 444

Usability (US) 444

Fault Tolerance (FT) 444

Portability (PO) 444

Table 6. Summary of Attributes in Coquina Dataset

Attribute Description

ProjectID Unique identifier for each project.
RequirementText The textual description of the requirement.

3.2 Coquina Dataset

The Coquina dataset contains 1438 rows derived
from XML-formatted tender documents. It
includes attributes such as ProjectID and
RequirementText but lacks explicit labels for
requirement types. This dataset's diverse project
domains and real-world context offer valuable
insights into practical requirements. It provides a
larger volume of data compared to the PROMISE

Expanded dataset. A summary of attributes in
Coquina dataset is presented in Table 6.

The Coquina dataset’s diverse domains (e.g.,
healthcare, banking, insurance, and web
development) and real-world context
complement the PROMISE dataset by offering
practical examples and a broader range of
requirements. The dataset lacks explicit labels
for requirement types, presenting an opportunity

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

293

for classification techniques to infer labels from
textual content.

3.3 The Flow Diagram

The flow diagram illustrates the process of
feature engineering for managing agile
requirements of past projects from the dataset
using semantic strategies. The dataset was first
tokenized and later balanced using SMOTE. The
processed data was then subjected to two main
analyses: Topic Feature Extraction and LDA
Analysis. The features derived from these
analyses are further refined using TF-IDF and
Word2Vec for feature extraction, followed by
PCA and ANOVA for feature selection. Finally,
these selected features are fed into a machine
learning model for requirement management.
The flow diagram for the study is presented in
Fig. 3.

3.4 Feature Extraction

During preprocessing, we applied the following
steps to the RequirementText data:

Stop Word Removal: All common stop words
were removed to reduce noise and focus on
meaningful words.

Punctuation Removal: Punctuation marks were
stripped from the text to ensure consistency in
tokenization.

Lowercasing: All text was converted to
lowercase to maintain uniformity and avoid case-
sensitive discrepancies.

Next, tokenization was performed to split the
RequirementText into individual tokens, allowing
for more effective feature extraction and analysis.

Tokenization: For both datasets, word-based
tokenization is employed. This method breaks
down the requirement text into individual words
or tokens, facilitating analysis. For example, the
requirement "The system shall refresh the
display every 60 seconds." is tokenized into
["The", "system", "shall", "refresh", "the",
"display", "every", "60", "seconds", "."]. Table 7
shows how each document row in the dataset
was tokenized.

Stop Word Removal: This stage may also
involve additional preprocessing steps such as
stop word removal, where common words like
"the" and "and" are filtered out as they do not
contribute significant meaning to the analysis.
Mathematically, the removal process is
presented in Equation 1.

𝑓(𝑇) = 𝑇 − 𝑆 Equation 1

where T is the vector of tokens and S is the
vector of stop words.

Text Cleaning: Includes removal of punctuation
and handling hyphens. Punctuation is removed
to ensure clean tokens, and hyphens are
managed based on their impact on sentiment
analysis. Text cleaning is another critical step,
which includes removing punctuation, special
characters, and numbers that might clutter the
dataset. Common words that do not contribute
significantly to meaning are removed to reduce
noise.

Fig. 3. Flow Diagram for Semantic Analysis Strategies for Agile Requirement Management

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

294

Table 7. Example of Tokenization

Original Text Tokenized Text

"User should be able to log in" ["User", "should", "be", "able", "to", "log", "in"]

Once tokenization is complete, the resulting
tokens are used to build the feature matrix, which
will be the basis for feature extraction
techniques. This step is crucial for ensuring that
the data is in a suitable format for the
subsequent stages of analysis, including TFIDF
and Word2Vec transformations.

3.5 Latent Dirichlet Allocation (LDA)

Analysis on Stop Word Removal

Stop words are common words that carry little
meaningful information, such as "is", "the", "and".
Removing these words can help in focusing on
the most relevant terms during text analysis. This
analysis examines the impact of stop word
removal on Latent Dirichlet Allocation (LDA) topic
modeling, text classification, and cosine similarity
using three sample sets from the Promise
Expanded dataset.

Latent Dirichlet Allocation (LDA) is a generative
probabilistic model used to discover the latent
topics within a collection of documents. Our
dataset is considered a document with a mixture
of topics and each topic is a mixture of words.

We measured the impact by leveraging LDA’s
ability to identify topics within our dataset,
gaining insights into how these topics are
distributed across the dataset and examining
how they correlate with different types of
requirements. This analysis was conducted both
before and after significant preprocessing steps,
such as stop word removal.

The LDA model was trained on the preprocessed
text data to extract latent topics. We set the
number of topics to 10, with an alpha value of 0.1
to control the distribution of topics across
documents, and a beta value of 0.01 to manage
the distribution of words across topics.

3.5.1 Dataset samples

Sample 1:

A. Original: "The system shall refresh the
display every 60 seconds."

B. Without Stop Words: ["system", "shall",
"refresh", "display", "every", "60",
"seconds"]

Sample 2:

A. Original: "The application shall match the
color of the schema set forth by
Department of Homeland Security."

B. Without Stop Words: ["application",
"shall", "match", "color", "schema", "set",
"forth", "Department", "Homeland",
"Security"]

Sample 3:

A. Original: "If projected the data must be
readable. On a 10x10 projection screen
90% of viewers must be able to read Event
/ Activity data from a viewing distance of
30."

B. Without Stop Words: ["projected", "data",
"must", "readable", "10x10", "projection",
"screen", "90", "%", "viewers", "able",
"read", "Event", "Activity", "viewing",
"distance", "30"].

3.5.2 Latent Dirichlet Allocation (LDA)
Analysis

Sample 1:

Topic Distribution (Before Removal): Topic 10
("information") had the highest probability of
0.4857.

Sample 2:

Topic Distribution (Before Removal): Topic 7
("available") had the highest probability of
0.9182.

Sample 3:

Topic Distribution (Before Removal): Topic 5
("customer") had the highest probability of
0.9471.

3.6 Impact of Stop Word Removal

Table 8 shows the Bag of Words (BoW) matrix
for Sample 1 requirement before the removal of
stop words, illustrating the frequency of terms
used.

Table 9 presents the topic distribution for Sample
1 requirement before stop word removal,
highlighting the top words and their probabilities
within each topic.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

295

Table 8. Bag of Words Matrix for Sample 1

Document System shall Refresh display every 60 seconds

Requirement 1 1 1 1 1 1 1

Table 9. Topic Distribution for Sample 1 Requirement Before Removal of Stop Words

Topic Index Topic TopWords Topic Distribution

0 Topic 1 'user' 0.01666861
1 Topic 2 'shall' 0.01666791
2 Topic 3 'allow' 0.01667039
3 Topic 4 'enable' 0.01666936
4 Topic 5 'users' 0.01666877
5 Topic 6 'select' 0.01666929
6 Topic 7 'report' 0.01667186
7 Topic 8 'send' 0.01666886
8 Topic 9 'enter', 0.38092515
9 Topic 10 'information' 0.48571981

Table 10 displays the Bag of Words
(BoW) matrix for Sample 2 requirement before
stop word removal, detailing the term
frequencies.

Table 11 provides the topic distribution for
Sample 2 requirement before the
removal of stop words, showcasing the primary
words and their associated probabilities for each
topic.

Table 12 illustrates the topic distribution for
Sample 3 requirement prior to stop word
removal, focusing on the significant words and
their probabilities in each topic.

Table 13 demonstrates the impact of stop word
removal on topic modeling by comparing the top
words and topic changes across several sample
requirements.

Removing stop words led to a more diverse topic
distribution in the LDA analysis. The results show
a clearer representation of underlying topics, as
seen in the increased diversity of topics after
stop word removal, improving topic modeling
accuracy.

4. RESULTS

The results of feature extraction using the
different techniques are presented in this
Section.

4.1 Feature Extraction

Feature extraction is a critical step in
transforming textual data into a numerical format

that can be effectively used by machine learning
models. In this stage, two prominent techniques
are employed: TFIDF (Term Frequency-Inverse
Document Frequency) and Word2Vec
embeddings. This hybrid method provides a
nuanced representation by integrating both term
frequency and semantic relationships.

4.2 TFIDF (Term Frequency-Inverse
Document Frequency)

The TFIDF score for a term 𝑡 in a document 𝑑
within a corpus 𝐷 is calculated as follows;

Term Frequency (TF): Measures how frequently
a term appears in a document. The formula for
TF is presented in Equation 2.

𝑇𝐹(𝑡, 𝑑) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

 Equation 2

Inverse Document Frequency (IDF): Measures
how important a term is across the entire
dataset. The formula for IDF is presented in
Equation 3.

The inverse of the document frequency is
mathematically represented as follows:

 𝑖𝑑𝑓𝑖=

 𝑙𝑜𝑔 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑖𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

Equation 3

Combining these two metrics, the TF-IDF feature
vector can be defined in Equation 4:

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑖,𝑗) = 𝑡𝑓𝑖,𝑗 × 𝑖𝑑𝑓𝑖

Equation 4

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

296

Table 10. Bag of Words Matrix for Sample 2

Document Application Shall Match Color Schema Set Forth Department Homeland Security

Requirement 1 1 1 1 1 1 1 1 1 1

Table 11. Topic Distribution for Sample 2 requirement Before Removal of Stop Words

Topic Index Topic Top Words Topic Distribution

0 Topic 1 'shall' 0.0090939
1 Topic 2 'user' 0.00909693
2 Topic 3 'users' 0.00909187
..
7 Topic 8 'use' 0.00909238
8 Topic 9: 'display' 0.00909739
9 Topic 10 'disputes' 0.00909338

Table 12. Topic Distribution for Sample 3 requirement Before Removal of Stop Words

Topic Index Topic Top Words Topic Distribution

0 Topic 1 'shall' 0.00588262
1 Topic 2 , 'product' 0.00588282
2 Topic 3 'user' 0.00588295
3 Topic 4 'able' 0.00588296
4 Topic 5 'customer' 0.94705368
5 Topic 6 'access' 0.00588312
6 Topic 7 'request', 0.00588309
7 Topic 8 'supervisors' 0.00588243
8 Topic 9: 'ensure' 0.00588351
9 Topic 10 'time' 0.00588281

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

297

Table 13. Impact of changes in Topics Modelling

Requirement Text label kB kA Top Words

'The system shall refresh the display every 60 seconds.' PE 9 9 ['user', 'shall', 'allow', 'enable', 'users', 'select', 'report',
'send', 'enter', 'information']

'The application shall match the color of the schema set forth by
Department of Homeland Security'

LF 6 4 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available',
'use', 'display', 'disputes']

'If projected the data must be readable. On a 10x10 projection
screen 90% of viewers must be able to read Event / Activity data
from a viewing distance of 30'

US 4 2 ['shall', 'product', 'user', 'able', 'customer', 'access',
'request', 'supervisors', 'ensure', 'time']

'The product shall be available during normal business hours. As long
as the user has access to the client PC the system will be available
99% of the time during the first six months of operation.'

A 6 3 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available',
'use', 'display', 'disputes']

'If projected the data must be understandable. On a 10x10 projection
screen 90% of viewers must be able to determine that Events or
Activities are occuring in current time from a viewing distance of 100'

US 4 8 ['shall', 'product', 'user', 'able', 'customer', 'access',
'request', 'supervisors', 'ensure', 'time']

'The product shall ensure that it can only be accessed by authorized
users. The product will be able to distinguish between authorized
and unauthorized users in all access attempts'

SE 3 7 ['shall', 'product', 'player', 'shot', 'defensive', 'offensive',
'grid', 'ship', 'hit', '99']

'The product shall be intuitive and self-explanatory. 90% of new users
shall be able to start the display of Events or Activities within 90
minutes of using the product.'

US 6 4 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available',
'use', 'display', 'disputes']

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

298

Here, tf represents the frequency of the term in
the document, and idf is the inverse of the
document frequency for term i and document j.
Therefore, the term frequency-inverse document
frequency (TF-IDF) is given in Equation 5

𝑡𝑓 − 𝑖𝑑𝑓(𝑡𝑑, 𝑖𝑗) =
𝑡𝑓(𝑡𝑑,𝑖𝑗)𝑙𝑜𝑔 (

|𝐷|

𝑑𝑓(𝑡𝑖)
)

𝑑𝑗
 Equation 5

The algorithm to compute TF-IDF is given below:

Step 1: Inverse Document Frequency (IDF)
Calculation

Count the number of times each word appears in
a sentence.

Divide by the total number of words in the
sentence.

Step 2: Inverse Document Frequency (IDF)
Calculation

Count the number of sentences each word
appears in.

Divide the total number of sentences by this
number.

Take the logarithm of the result.

Step 3: Weighted TF-IDF Calculation

Multiply the TF and IDF values for each
word.

To compute the weighted TF-IDF Matrix, we
would have to compute each TF-IDF across their
𝑖, 𝑗 word. The word system in the first sentence of
our first five requirement in the Promise
explained corpus given below,

"system shall refresh display every 60 seconds",
"application shall match color schema set forth
department homeland security",

"if projected data must readable on 10x10
projection screen 90 % viewers must able read
event / activity data viewing distance 30",

"the product shall available normal
business hours as long user access client
pc system available 99 % time first six months
operation",

"if projected data must understandable on 10x10
projection screen 90 % viewers must able
determine events activities occurring current time
viewing distance 100"

𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚,1 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 ‘𝑠𝑦𝑠𝑡𝑒𝑚’ 𝑎𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 1

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 1
=

1

6
 Equation 6

𝐼𝐷𝐹𝑠𝑦𝑠𝑡𝑒𝑚 = log
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ ‘𝑠𝑦𝑠𝑡𝑒𝑚’
 = log

5

2
 Equation 7

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑠𝑦𝑠𝑡𝑒𝑚,1) = 𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚,1 × 𝐼𝐷𝐹𝑠𝑦𝑠𝑡𝑒𝑚 = (
1

6
) × log(

5

2
) Equation 8

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑠𝑦𝑠𝑡𝑒𝑚,1) =
log(2.5)

6
= ≈

0.39794

6

1

6
× 0.39794 ≈ 0.06632 Equation 9

The output of the TF-IDF stage is a weighted matrix for the Promise expanded dataset, with
dimensions 969 x 2060. The matrix is shown below:

 Word1 Word2 Word2060

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (969𝑟𝑜𝑤𝑠)

(

𝑇𝐹 − 𝐼𝐷𝐹1,1 𝑇𝐹 − 𝐼𝐷𝐹1,2 𝑇𝐹 − 𝐼𝐷𝐹1,2060
𝑇𝐹 − 𝐼𝐷𝐹2,1 𝑇𝐹 − 𝐼𝐷𝐹2,2 𝑇𝐹 − 𝐼𝐷𝐹2,2060

.

.

.

.
𝑇𝐹 − 𝐼𝐷𝐹969,1 𝑇𝐹 − 𝐼𝐷𝐹969,2 𝑇𝐹 − 𝐼𝐷𝐹969,2060)

The weighted TF-IDF matrix is sparse, with many zero entries due to the large number of unique
terms and limited presence in individual documents. To simplify, only the top 10 words by their total
TF-IDF score are presented. Fig. 4 displays a word cloud illustrating the importance of these terms
across the dataset.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

299

Fig. 4. Wordcloud of Words across Requirements

The result of the top N=10 weighted T-IDF is presented in Table 14.

Table 14. Weighted TF-IDF of Top N=10 words

shall The system product user Allow users must able information

0.1155 0.1171 0.1513 0 0 0 0 0 0 0

0.0763 0.0774 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.2405 0.1229 0

0.0614 0.0622 0.0804 0.1065 0.1143 0 0 0 0 0

0 0 0 0 0 0 0 0.2356 0.1203 0

0.0709 0.0720 0 0.2462 0 0 0.3295 0 0.1578 0

0.1328 0.0673 0 0.2304 0 0 0.1542 0 0.1477 0

0.0855 0.0868 0 0.1484 0 0 0 0 0 0

0.0855 0.0867 0.1120 0 0 0 0 0 0 0

0.1154 0.1170 0.1512 0 0 0 0 0 0 0

0.1372 0.1391 0.1797 0 0 0 0 0 0 0

0.1481 0.1502 0.1940 0 0 0 0 0 0 0

0.0701 0.0711 0 0 0 0 0 0 0 0

0 0.0740 0 0 0 0 0 0 0 0

4.3 Word2Vec

Word2Vec was employed to generate vector
representations of requirements text, enabling
the capture of semantic relationships between
words. We compared two models: Continuous
Bag of Words (CBoW) and SkipGram, ultimately
selecting the SkipGram model for its superior
performance in identifying semantic similarities
between requirements. This decision was based
on its higher similarity scores, which better
distinguished requirements within and across
different classes, as demonstrated in Table 15.
The effectiveness of the SkipGram model
underscores its ability to enhance the accuracy
of requirement classification in our adaptive
management system.

Table 15 presents the measure of similarity
between each pair of the requirement. Fig. 5 is a

scatter plot that compares semantic similarity
scores between pairs of requirements
using two models: CBoW and SkipGram. Each
point shows the similarity score from CBoW on
the x-axis and the score from SkipGram on the y-
axis.

Red Points (LF - Look-and-Feel): For example,
the pair R1-R2 has high similarity scores of
0.9984 (CBoW) and 0.9995 (SkipGram),
indicating strong agreement between the models.

Blue Points (PE - Performance): For instance,
the pair R3-R4 has scores of 0.9979 (CBoW) and
0.9996 (SkipGram), also showing high similarity
but slightly less agreement compared to the LF
category.

The vector representation for word w is
exemplified in Table 16.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

300

Fig. 5. Word2vec Measurement of Semantic Similarity

Table 15. Word2Vec Measurement of Semantic Similarity

Requirement 1 Requirement 2 Class CBoW SkipGram

["'The", 'look', 'and', 'feel', 'of',
'the', 'system', 'shall', 'conform',
'to', 'the', 'user', 'interface',
'standards', 'of', 'the', 'smart',
'device', '.']

["'The", 'product', 'shall', 'have',
'a', 'consistent', 'color', 'scheme',
'and', 'fonts', '.']

LF 0.9984 0.9995

["'The", 'system', 'shall', 'provide',
'a', 'history', 'report', 'of',
'changes', 'made', 'to', 'the',
'Activity', 'or', 'Event', 'data']

["'The", 'system', 'shall', 'display',
'both', 'the', 'active', 'and',
'completed', 'order', 'history', 'in',
'the', 'customer', 'profile', '.']

PE 0.9979 0.9996

["'The", 'search', 'results', 'shall',
'be', 'returned', 'no', 'later', '30',
'seconds', 'after', 'the', 'user',
'has', 'entered', 'the', 'search',
'criteria']

["'The", 'search', 'for', 'the',
'preferred', 'repair', 'facility',
'shall', 'take', 'no', 'longer', 'than',
'8', 'seconds', '.', 'The', 'preferred',
'repair', 'facility', 'is', 'returned',
'within', '8', 'seconds']

PE 0.9983 0.9995

Table 16. Example of Word2Vec Vectors

Word Vector Representation

"login" [0.12, 0.34, -0.45, ...]
"user" [0.22, -0.14, 0.33, ...]

Word2Vec provides two main models: Continuous Bag of Words (CBOW) and Skip-Gram.

CBOW Model: Predicts the target word based on its surrounding context words. The objective is to
maximize the probability of the target word given its context:

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

301

𝑃(𝑤𝑡 ∣∣ 𝑤𝑡−𝑛, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑛)

Skip-Gram Model: Predicts the surrounding context words given a target word. The goal is to
maximize the probability of the context words given the target word:

𝑃(𝑤𝑡−𝑛, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑛 ∣ 𝑤𝑡)

In Word2Vec, each word is represented as a dense vector in a high-dimensional space, where
semantically similar words have similar vector representations. The training parameters typically
include vector size, window size, and minimum count, which control the dimensionality of the
vectors, the size of the context window, and the minimum frequency of words to be considered,
respectively.

4.4 TF-IDF Weighted Word2Vec

In Sections 3.5.1 and 3.5.2, we discussed TF-IDF and Word2Vec for converting text into numerical
data. TF-IDF highlights word importance but lacks semantic context, while Word2Vec captures
semantic meaning but ignores term importance. To combine their strengths, we propose a TF-IDF
weighted Word2Vec approach. This method integrates TF-IDF’s term importance with Word2Vec’s
semantic understanding by weighting Word2Vec vectors with TF-IDF scores, resulting in a more
contextually relevant representation of each document. The final TF-IDF weighted Word2Vec matrix
has dimensions 969 x 100, with 969 documents and 2060 unique words. The TF-IDF weighted
Word2Vec representation is calculated through matrix multiplication of the TF-IDF representation and
Word2Vec representations as shown in Equation 10

𝑅 = 𝑇 ⋅ 𝑊 Equation 10

Each row in R is computed in Equation 3.19

R𝑖 = ∑ 𝑇(𝑤𝑜𝑟𝑑,𝑖) .𝑊𝑤𝑜𝑟𝑑
2060
𝑗=1 Equation 11

Where:

R𝑖 is the i-th row in 𝑅

𝑇(𝑤𝑜𝑟𝑑,𝑖) is the TF-IDF weight of the i-th document

𝑊𝑤𝑜𝑟𝑑 is the Word2Vec vector of the word

The TF-IDF weighted Word2Vec representation matrix 𝑅 of size 969 x 100 is computed for each
document. For example, the first requirement ("system shall refresh display every 60 seconds") is
represented by expanding the equation as:

𝑤𝑅(𝑑1) = 𝑇𝑠𝑦𝑠𝑡𝑒𝑚,1𝑊(𝑠𝑦𝑠𝑡𝑒𝑚) + 𝑇𝑠ℎ𝑎𝑙𝑙,1𝑊(𝑠ℎ𝑎𝑙𝑙) + 𝑇𝑟𝑒𝑓𝑟𝑒𝑠ℎ,1𝑊(𝑟𝑒𝑓𝑟𝑒𝑠ℎ) + 𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦,1𝑊(𝑑𝑖𝑠𝑝𝑙𝑎𝑦) +

 𝑇𝑒𝑣𝑒𝑟𝑦,1𝑊(𝑒𝑣𝑒𝑟𝑦) + 𝑇60,1𝑊(60) + 𝑇𝑠𝑒𝑐𝑜𝑛𝑑𝑠,1𝑊(𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

This process is repeated for the entire dataset,
resulting in a final matrix with 969 rows and 100
features.

5. FEATURE SELECTION

In the feature selection process, PCA and
ANOVA were used to refine the TF-IDF weighted
Word2Vec data obtained in Section 4.3.

5.1 PCA (Principal Component Analysis)

Principal Component Analysis (PCA) was
employed to reduce the high-dimensional data

derived from the TF-IDF weighted Word2Vec
representations, resulting in a more efficient and
interpretable dataset for further analysis and
modeling.

Dimensionality Reduction: The initial dataset
consisted of a high-dimensional feature space
with 100 features for each of the 969
requirements, generated from the TF-IDF
weighted Word2Vec embeddings. PCA was
applied to reduce these 100 features to 30
dimensions, balancing the retention of significant
variance in the data with the need for
computational efficiency.

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

302

Feature Extraction: Through PCA, new features
(principal components) were extracted,
representing linear combinations of the original
features. These principal components were
uncorrelated and captured the most variance
within the dataset, highlighting the most
informative aspects of the data. This
transformation set the stage for enhancing the
performance of subsequent machine learning
models.

5.2 ANOVA (Analysis of Variance)

Following PCA, Analysis of Variance (ANOVA)
was applied to evaluate the relevance of the
transformed features in relation to the class
labels (target variable):

Significance Testing: Features were assessed
based on their F-statistic values, with a
significance threshold set at p-value < 0.05. High
F-statistic values indicate features that are most
relevant to the classification task.

Feature Selection: Based on the F-statistic
results, significant features were selected for
further analysis and model training, enhancing
the predictive performance and reducing
computational complexity.

The Mathematical Representation of the ANOVA
F-statistic for feature f is given in Equation 12.

𝐹 =
(𝑊𝑖𝑡ℎ𝑖𝑛−𝐶𝑙𝑎𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

(𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝐶𝑙𝑎𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
 Equation 12

F-Statistic Results: The F-statistic results for
the features selected from the TF-IDF weighted
Word2Vec embeddings are presented in Table
17. This table includes the Sum of Squares

Between (SSB), Sum of Squares Within (SSW),
Mean Square Between (MSB), Mean Square
Within (MSW), and the F-statistic for each
feature.

Features from the PCA results are ranked
based on their F-statistic values. A higher
F-statistic indicates a more significant
difference between groups, suggesting that the
feature is more relevant. A significance threshold
set at a value of p-value < 0.05 is applied to
select features with statistically significant
differences.

Selection of Significant Features: Based on
the F-statistic results, features with higher F-
statistic scores indicate a greater ability to
distinguish between classes. In this case,
Feature9 and Feature3 were identified as the
most significant features due to their high F-
statistic values (112.6935 and 19.8414,
respectively). These features were selected for
further analysis and model training, while
Feature2 and Feature14 were deemed less
significant and not selected.

Top Selected Features: The top ten features
selected from the TF-IDF weighted Word2Vec
embeddings across different datasets are
summarized in Table 18. The Table lists the
features that were most relevant to the class
labels.

Table 19 summarizes the ANOVA results,
indicating the significance of each feature based
on the calculated p-values. Features with lower
p-values < 0.05 are considered statistically
significant in distinguishing between classes.

Table 17. F-Statistic Results for Selected Features

Features SSB SSW MSB MSW F-Statistic

Feature2 1.89e-05 3.47e-05 6.29e-06 2.89e-06 2.1732
Feature3 0.001066 0.00022 0.00036 1.79e-05 19.8414
Feature9 0.00091 3.23e-05 0.00030 2.69e-06 112.6935
Feature14 6.55e-05 2.134e-05 1.55170 1.78e-06 8.7262

Table 18. Top Ten Features

Dataset Count Top Ten Features

tfidf_w2v-
12

100 feature53, feature62, feature92, feature76, feature27, feature25, feature6,
feature44, feature52, feature77

tfidf_w2v-
11

100 feature53, feature27, feature6, feature62, feature44, feature9, feature57,
feature52, feature25, feature89

tfidf_w2v-2 11 feature25, feature92, feature2, feature76, feature14, feature66, feature67,
feature53, feature36, feature3

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

303

Table 19. ANOVA Results

Feature F-Statistic p-value

Feature2 2.1732 0.1442
Feature3 19.8414 0.0000605
Feature9 112.6935 0.00000000469
Feature14 8.7262 0.0024

6. CONCLUSION

This study demonstrates the effectiveness of
integrating semantic feature extraction, advanced
feature selection, and topic modeling to enhance
adaptive management strategies in agile
software development. By employing TF-IDF
weighted Word2Vec for feature extraction and
Latent Dirichlet Allocation (LDA) for topic
modeling, we significantly improved the semantic
representation of requirements and the clarity of
the requirement text used to describe user
needs. To address the challenge of high-
dimensional embeddings from TF-IDF weighted
Word2Vec, Principal Component Analysis (PCA)
was applied to reduce the feature space from
100 dimensions to 30. Additionally, ANOVA was
used to select the top 3 features that best
capture the semantic characteristics of the
dataset.

PRACTICAL IMPLICATIONS

The methodologies applied in this study have
practical implications for the software
development industry, particularly in Agile
environments. By improving precision and recall
scores for functional requirements (F), the study
demonstrates an enhanced ability to manage the
predominant class of requirements effectively.
Additionally, SMOTE’s application helped
address class imbalance, improving the handling
of minority requirement types. These approaches
can be directly applied in real-world scenarios to
enhance the accuracy and efficiency of
requirement management, contributing to more
reliable and adaptive software development
processes.

LIMITATIONS

Despite the progress made, the study has certain
limitations. It focused primarily on text-based
requirements, potentially overlooking the
complexity of non-textual data such as diagrams
or models in Agile projects. Moreover, while
SMOTE was effective in balancing the dataset,
the synthetic generation of minority class
examples may not fully capture the nuances of
actual requirements.

FUTURE WORK

Future research should explore integrating multi-
modal data, including visual and diagrammatic
representations, to extend the model's
applicability. Investigating alternative techniques
for handling class imbalance beyond SMOTE
could lead to more robust models. Additionally,
the features selected in this study will be used for
predicting requirements via machine learning
models, enhancing adaptive requirement
management strategies. Expanding the study to
include a broader range of datasets from
various domains could also provide insights
into the generalizability of the proposed
methods. Addressing these gaps will
advance the development of adaptive
requirement management strategies in agile
environments.

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declare that NO generative AI
technologies such as Large Language Models
(ChatGPT, COPILOT, etc) and text-to-image
generators have been used during writing or
editing of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Abbas M, Ferrari A, Shatnawi A, Enoiu EP,

Saadatmand M. Is requirements similarity
a good proxy for software similarity? An
empirical investigation in industry. In
Requirements Engineering: Foundation for
Software Quality. Springer International
Publishing. 2021; 22-37.

2. Bing L, Xiuwen N. NFRNet: A deep neural
network for automatic classification of non-
functional requirements. In Proceedings of
the 2022 IEEE 29th International
Requirements Engineering Conference
(RE); 2022.

3. Asad K, Muqeem M. Critical analysis of
requirement management in agile
development. Empirical Software
Engineering. 2022;26(28).

4. Franch X, Seyff N, Oriol M, Fricker S,
Groher I, Vierhauser M, Wimmer M.
Towards integrating data-driven
requirements engineering into the software
development process: A vision paper. In

Obike et al.; J. Eng. Res. Rep., vol. 26, no. 9, pp. 287-304, 2024; Article no.JERR.123141

304

26th International Working Conference,
Italy. 2020;135-144.

5. Canedo E, Mendes B. Software
requirements classification using machine
learning algorithms. Entropy. 2020;
22(9):1057.

6. Kurtanović Z, Maalej W. Automatically
classifying functional and non-functional
requirements using supervised machine
learning. In 2017 IEEE 25th International
Requirements Engineering Conference
(RE); 2017.

7. Navarro-Almanza R, Juárez-Ramírez R,
Licea G. Towards supporting software
engineering using deep learning: A case of
software requirements classification. In
2017 5th IEEE International Conference in
Software Engineering Research and
Innovation (CONISOFT); 2017.

8. Yang B, Ma X, Wang C, et al. User story
clustering in agile development: A
framework and an empirical study.
Frontiers of Computer Science. 2023;17:
176213.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/123141

https://www.sdiarticle5.com/review-history/123141

