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ABSTRACT 
 

Efficient management and prioritization of software requirements are critical challenges in agile 
projects, where requirements constantly evolve due to changing user needs, business goals, and 
regulatory updates. This paper explores the role of semantic feature extraction in enabling adaptive 
management strategies. Using the PROMISE Expanded Dataset and the Coquina Dataset, we 
employed TF-IDF weighted Word2Vec for advanced tokenization and feature extraction. Latent 
Dirichlet Allocation (LDA) was used to analyze how preprocessing steps like stop word removal 
impact topic representation, revealing that removing stop words improved topic specificity and 
coherence. To address class imbalance, Synthetic Minority Over-sampling Technique (SMOTE) 
was applied, enhancing the model's ability to handle underrepresented classes effectively. Principal 
Component Analysis (PCA) reduced the dimensionality of TF-IDF weighted Word2Vec embeddings 
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from 100 features to 30, while Analysis of Variance (ANOVA) identified the most significant features 
for classification. The results obtained identified three features to have p-values below 0.05 as 
statistically significant, p-value = 0.0000605, p-value = 0.00000000469, and p-value = 0.0024. 
These extracted features could be used as input to training machine learning models for predicting 
and managing software requirements adaptively during agile development. With the reduction of 
ambiguities and sentiments of the user at the requirement phase, the development phase could be 
undertaken seamlessly with ease. 
 

 
Keywords: Semantic Analysis; software requirements; natural language processing (NLP) techniques; 

latent dirichlet allocation (LDA). 

 
1. INTRODUCTION 
 
Effective requirement management and 
prioritization are fundamental to agile software 
development. Agile methodologies emphasize 
iterative progress and flexibility, making it 
essential to have robust systems for handling           
requirements. This paper explores the use of 
semantic analysis and adaptive management 
strategies to improve the classification and 
prioritization of requirements. We leverage the 
PROMISE Expanded Dataset and the Coquina 
Dataset to demonstrate our approach. The main 
objective of this research is to highlight the 
pivotal role of semantic feature extraction in 
enabling adaptive management strategies within 
machine learning models for agile software 
development. This research focuses on 
enhancing the accuracy and adaptability of 
managing changing software requirements by 
leveraging advanced feature extraction 
techniques. The specific objectives are to: 
 

a. Utilize historical data from the 
PROMISE_exp repository and past 
software projects from Coquina Software 
Company Limited to identify patterns and 
trends related to requirement changes in 
agile environments. 

b. Carry out Data exploration of the datasets. 
c. Extract some features of the datasets 

using extraction techniques, including TF-
IDF weighted Word2Vec and Latent 
Dirichlet Allocation (LDA), to improve the 
representation and analysis of requirement 
text. 

d. Perform feature selection on the datasets. 
 

2. LITERATURE REVIEW 
 

In recent years, the development of adaptive 
management strategies for agile requirements 
has gained increasing attention, with a particular 
focus on semantic feature extraction. This 
domain encompasses a variety of natural 

language processing (NLP) techniques, such as 
stop word removal, Latent Dirichlet Allocation 
(LDA), sentiment analysis, and various text 
representation methods including Bag of Words, 
TF-IDF, Word2Vec, and embeddings. This 
literature review integrates and synthesizes 
recent research findings to provide a 
comprehensive understanding of these 
techniques, identify existing knowledge gaps, 
and propose future research directions. 
 
A foundational NLP technique is stop word 
removal, which involves eliminating commonly 
used words (e.g., "the," "is," "and") to focus on 
more meaningful content. Research by Abbas et 
al. [1] explores the relationship between 
requirements similarity and software similarity, 
emphasizing the importance of effective feature 
extraction techniques like stop word removal in 
understanding requirements within agile 
environments. The removal of stop words 
improves the quality of feature engineering, 
allowing for more insightful semantic analysis. 
 
Latent Dirichlet Allocation (LDA) has emerged as 
a powerful tool for uncovering hidden thematic 
structures within a corpus. Bing and Xiuwen [2] 
highlight the potential of deep learning models 
such as NFRNet for classifying non-functional 
requirements (NFRs), suggesting the use of LDA 
and word embeddings to enhance feature 
extraction in agile requirements management. 
Similarly, Asad and Muqeem [3] proposed that 
advanced feature engineering methods like LDA 
can better capture the dynamic nature of 
requirements in agile development. 
 

Sentiment analysis, a technique used to extract 
subjective information from text, is also relevant 
in the context of adaptive management 
strategies. Franch et al. [4] present a vision for 
data-driven requirements engineering, 
emphasizing the need for integrating sentiment 
analysis with feature engineering to optimize the 
management of requirements. The application of 
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sentiment analysis offers deeper insights into 
user feedback and prioritization, particularly in 
agile settings where requirements frequently 
evolve. 
 

To represent text data effectively, Bag of Words 
and TF-IDF are fundamental techniques in 
feature extraction. Canedo and Mendes [5] 
provide a comparative study of machine learning 
algorithms for classifying software requirements, 
highlighting TF-IDF's effectiveness in managing 
agile requirements. The TF-IDF model 
emphasizes the importance of specific terms 
within a document, which is critical for feature 
extraction in requirement management. 
 

Word2Vec, a model designed to generate word 
embeddings that capture semantic meaning, 
complements these text representation 
techniques. Research by Kurtanović and Maalej 
[6] demonstrates the potential of machine 
learning models, such as Word2Vec, in 
classifying functional and non-functional 
requirements. The integration of Word2Vec with 
TF-IDF balances semantic context with term 
importance, enhancing feature extraction in agile 
requirements management. 
 

Deep learning methods continue to advance 
feature extraction techniques. Navarro-Almanza 
et al. [7] propose the use of deep learning for 
software requirements classification, reinforcing 
the role of semantic analysis and feature 
engineering in improving the accuracy of agile 
requirement management. Yang et al. [8] further 
explored clustering user stories in agile 
development, showcasing how semantic analysis 
can enhance the categorization and 
management of dynamic requirements. 
 

This exploration of NLP techniques, deep 
learning models, and their applications in 
adaptive management strategies underscores 
the importance of continued research and 
development in this evolving field. By integrating 
these methods, researchers and practitioners 
can improve the management of agile 
requirements, addressing challenges posed by 
the dynamic nature of software development 
environments. 
 

3. RESEARCH METHODOLOGY 
 

The methodology involves preliminary data 
processing with topic modeling to evaluate the 
impact of stop word removal, followed by feature 

extraction using weighted TF-IDF and Word2Vec 
embeddings, and feature selection using PCA 
and ANOVA. 
 

3.1 Promise Expanded Dataset 
 
The Promise Expanded Dataset is a collection of 
software development requirements in various 
NASA software projects. It comprises 969 
instances with clearly defined attributes, 
including Project ID, Requirement Text, and 
Requirement Type.  
 
The PROMISE Expanded Dataset consists of 
969 instances with three key attributes: 
 
Project ID: Identifies the project. 
 
Requirement Text: Textual representation of the 
requirements. 
 
Requirement Type: Categorizes the 
requirements into Functional and Non-Functional 
types, with specific categories like Performance, 
Usability, and Security. 
 
To better understand the dataset, we conducted 
an initial exploration, focusing on the distribution 
and characteristics of the Requirement Type 
attribute. Fig. 1 shows a bar plot visualizing the 
class distribution in the Promise expanded 
dataset.  
 
The bars in Fig. 1 represent the distribution of 
various requirement types with their respective 
sample counts. The Functional Requirements (F) 
category has the tallest bar, indicating its 
significant dominance in the dataset. In contrast, 
the other bars represent different Non-Functional 
Requirement (NFR) categories, each with much 
smaller counts compared to the functional 
category. 
 

This figure demonstrates the dataset's 
imbalance, with Functional Requirements (F) 
being overwhelmingly prevalent, while          
several Non-Functional Requirement (NFR) 
categories, such as Security (SE) and Usability 
(US), have relatively more presence compared to 
others like Fault Tolerance (FT) and Portability 
(PO). 
 

A categorization of the dataset into Functional 
and Non-Functional Requirements is presented 
in Table 1.  
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Fig. 1. Promise expanded dataset class distribution 
 

Table 1. Distribution of Requirement Types in Promise Expanded Dataset 
 

Requirement Type Count 

Functional (F) 444 
Availability (A) 31 
Legal (L) 15 
Look-and-feel (LF) 49 
Maintainability (MN) 24 
Operability (O) 77 
Performance (PE) 67 
Scalability (SC) 22 
Security (SE) 125 
Usability (US) 85 
Fault Tolerance (FT) 18 
Portability (PO) 12 

 
This dataset's structured framework and labeled 
nature makes it suitable for supervised learning 
approaches.  
 

3.1.1 Balancing the promise expanded 
dataset with SMOTE 

 

In addressing the class imbalance present in the 
Promise Expanded Dataset, we employed the 
Synthetic Minority Over-sampling Technique 
(SMOTE) to enhance the representation of the 
minority class. The original dataset comprised 
969 samples with 2113 features, where the 
distribution of classes was significantly skewed. 
This imbalance posed a challenge for effective 
model training, as classifiers tend to be biased 
towards the majority class, leading to              
suboptimal performance in predicting the minority 
class. 
 

To mitigate this issue, we implemented SMOTE, 
which generates synthetic samples for the 

minority class by interpolating between existing 
minority class instances. Specifically, for each 
minority class sample, SMOTE identifies its k-
nearest neighbors (in our case, k=5)                
and creates new synthetic examples                        
along the line segments connecting the minority 
sample to its neighbors. This approach not only 
increases the number of minority class samples 
but also helps in expanding the decision 
boundary, allowing the classifier to generalize 
better. 
 
After applying SMOTE, the dataset was 
resampled to a total of 5328 samples while 
maintaining the original feature dimensionality of 
2113. The resampling process effectively 
balanced the class distribution, providing a more 
equitable representation of both classes. The 
resulting feature matrix is summarized in Table 2, 
which presents the shape of the original and 
resampled datasets. 
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Table 2. Dataset Shapes Before and After 
SMOTE 

 

Dataset Number 
of 
Samples 

Number of 
Features 

Original Dataset 969 2 
Resampled Dataset 5328 2 

 
The resampled dataset was then subjected to 
Principal Component Analysis (PCA) to reduce 
its dimensionality for visualization and further 
analysis. The PCA transformation yielded a new 
shape of (5328, 2), allowing us to visualize the 
distribution of the samples in a two-dimensional 
space.  

 
Table 3 presents the PCA transformed                    
data, with each sample's index and its 
corresponding values for the two principal 
components. 
 
Table 4 presents a sample of the PCA 
transformed data after applying SMOTE to the 
Promise Expanded Dataset. Each row 
corresponds to a synthetic sample generated by 
SMOTE, which has been transformed into a two-
dimensional space using Principal Component 
Analysis (PCA). This transformation reduces the 
dimensionality of the dataset while preserving 
variance, facilitating easier visualization and 
analysis of the data distribution. The two principal 
components (PC1 and PC2) capture the most 
significant directions of variance, summarizing 
the information from the original high-
dimensional feature space. 

 
The values in the table illustrate the positioning 
of synthetic samples created by SMOTE in this 
reduced feature space. By generating synthetic 
examples that lie between existing minority class 
samples, SMOTE fosters a more balanced 
representation of the minority class. This balance 
is crucial for improving classifier performance, as 
it enables them to learn from a richer set of 
examples, thereby enhancing their ability to 

generalize and accurately predict outcomes for 
the minority class. 
 

The results of the PCA transformation are 
presented in Table 4. 
 
The application of SMOTE not only addressed 
the class imbalance but also facilitated the 
generation of a more robust training dataset. This 
enhancement is crucial for improving the 
sensitivity and specificity of classifiers, 
particularly in scenarios where the minority class 
is of significant interest, such as in medical 
diagnosis or fraud detection. 
 

To further illustrate the effectiveness of SMOTE, 
we provide a scatter plot of the PCA-transformed 
data, which visually represents the distribution of 
the samples across the two principal 
components. Fig. 2 highlights the improved 
separation between the classes after applying 
SMOTE. 
 

The integration of SMOTE into the preprocessing 
pipeline has proven to be a valuable strategy for 
balancing the Promise Expanded Dataset, 
thereby enhancing the overall performance of 
subsequent machine learning models. The 
results underscore the effectiveness of SMOTE 
in creating a balanced dataset that supports the 
development of more accurate predictive models. 
 

3.1.2 Expected table result after applying 
SMOTE 

 
Applying SMOTE results in a balanced dataset 
with a more uniform distribution across the 
requirement types, allowing for more accurate 
and reliable classification models. The 
distribution table of the dataset after applying 
SMOTE is shown in Table 5. 
 
By applying SMOTE, each requirement type is 
adjusted to have an equal count of 444, aligning 
the dataset for better performance in training 
supervised learning models and reducing biases 
associated with class imbalance. 

 
Table 3. Sample of PCA Transformed Data 

 

Sample Index Principal Component 1 Principal Component 2 

1 0.04535025 0.05334709 
2 0.00410043 -0.02551591 
3 0.03961297 0.00944405 
4 0.23413237 0.07706761 
5 0.05658175 0.03019585 
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Table 4. PCA Transformed Dataset Shape 
 

Transformed Dataset Number of Samples Number of Features 

PCA Transformed Data 5328 2 
 

 
 

Fig. 2. Scatter Plot of PCA-Transformed Data 
 

Table 5. Distribution of Requirement Types After Applying SMOTE 
 

Requirement Type Count 

Functional (F) 444 

Availability (A) 444 

Legal (L) 444 

Look-and-feel (LF) 444 

Maintainability (MN) 444 

Operability (O) 444 

Performance (PE) 444 

Scalability (SC) 444 

Security (SE) 444 

Usability (US) 444 

Fault Tolerance (FT) 444 

Portability (PO) 444 
 

Table 6. Summary of Attributes in Coquina Dataset 
 

Attribute Description 

ProjectID Unique identifier for each project. 
RequirementText The textual description of the requirement. 

 

3.2 Coquina Dataset 
 

The Coquina dataset contains 1438 rows derived 
from XML-formatted tender documents. It 
includes attributes such as ProjectID and 
RequirementText but lacks explicit labels for 
requirement types. This dataset's diverse project 
domains and real-world context offer valuable 
insights into practical requirements. It provides a 
larger volume of data compared to the PROMISE 

Expanded dataset. A summary of attributes in 
Coquina dataset is presented in Table 6. 
 
The Coquina dataset’s diverse domains (e.g., 
healthcare, banking, insurance, and web 
development) and real-world context 
complement the PROMISE dataset by offering 
practical examples and a broader range of 
requirements. The dataset lacks explicit labels 
for requirement types, presenting an opportunity 
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for classification techniques to infer labels from 
textual content.  
 

3.3 The Flow Diagram 
 
The flow diagram illustrates the process of 
feature engineering for managing agile 
requirements of past projects from the dataset 
using semantic strategies. The dataset was first 
tokenized and later balanced using SMOTE. The 
processed data was then subjected to two main 
analyses: Topic Feature Extraction and LDA 
Analysis. The features derived from these 
analyses are further refined using TF-IDF and 
Word2Vec for feature extraction, followed by 
PCA and ANOVA for feature selection. Finally, 
these selected features are fed into a machine 
learning model for requirement management. 
The flow diagram for the study is presented in 
Fig. 3. 
 

3.4 Feature Extraction 
 
During preprocessing, we applied the following 
steps to the RequirementText data: 
 
Stop Word Removal: All common stop words 
were removed to reduce noise and focus on 
meaningful words. 
 
Punctuation Removal: Punctuation marks were 
stripped from the text to ensure consistency in 
tokenization. 
 
Lowercasing: All text was converted to 
lowercase to maintain uniformity and avoid case-
sensitive discrepancies. 

Next, tokenization was performed to split the 
RequirementText into individual tokens, allowing 
for more effective feature extraction and analysis. 
 
Tokenization: For both datasets, word-based 
tokenization is employed. This method breaks 
down the requirement text into individual words 
or tokens, facilitating analysis. For example, the 
requirement "The system shall refresh the 
display every 60 seconds." is tokenized into 
["The", "system", "shall", "refresh", "the", 
"display", "every", "60", "seconds", "."].  Table 7 
shows how each document row in the dataset 
was tokenized. 
 
Stop Word Removal: This stage may also 
involve additional preprocessing steps such as 
stop word removal, where common words like 
"the" and "and" are filtered out as they do not 
contribute significant meaning to the analysis. 
Mathematically, the removal process is 
presented in Equation 1. 
 

𝑓(𝑇) = 𝑇 − 𝑆         Equation 1 
 

where T is the vector of tokens and S is the 
vector of stop words. 
 

Text Cleaning: Includes removal of punctuation 
and handling hyphens. Punctuation is removed 
to ensure clean tokens, and hyphens are 
managed based on their impact on sentiment 
analysis. Text cleaning is another critical step, 
which includes removing punctuation, special 
characters, and numbers that might clutter the 
dataset. Common words that do not contribute 
significantly to meaning are removed to reduce 
noise.  

 

 
 

Fig. 3. Flow Diagram for Semantic Analysis Strategies for Agile Requirement Management 
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Table 7. Example of Tokenization 
 

Original Text Tokenized Text 

"User should be able to log in" ["User", "should", "be", "able", "to", "log", "in"] 

 
Once tokenization is complete, the resulting 
tokens are used to build the feature matrix, which 
will be the basis for feature extraction 
techniques. This step is crucial for ensuring that 
the data is in a suitable format for the 
subsequent stages of analysis, including TFIDF 
and Word2Vec transformations. 

 
3.5 Latent Dirichlet Allocation (LDA) 

Analysis on Stop Word Removal 
 
Stop words are common words that carry little 
meaningful information, such as "is", "the", "and". 
Removing these words can help in focusing on 
the most relevant terms during text analysis. This 
analysis examines the impact of stop word 
removal on Latent Dirichlet Allocation (LDA) topic 
modeling, text classification, and cosine similarity 
using three sample sets from the Promise 
Expanded dataset. 
 

Latent Dirichlet Allocation (LDA) is a generative 
probabilistic model used to discover the latent 
topics within a collection of documents. Our 
dataset is considered a document with a mixture 
of topics and each topic is a mixture of words. 
 

We measured the impact by leveraging LDA’s 
ability to identify topics within our dataset, 
gaining insights into how these topics are 
distributed across the dataset and examining 
how they correlate with different types of 
requirements. This analysis was conducted both 
before and after significant preprocessing steps, 
such as stop word removal. 
 

The LDA model was trained on the preprocessed 
text data to extract latent topics. We set the 
number of topics to 10, with an alpha value of 0.1 
to control the distribution of topics across 
documents, and a beta value of 0.01 to manage 
the distribution of words across topics.  
 

3.5.1 Dataset samples 
 

Sample 1: 
 

A. Original: "The system shall refresh the 
display every 60 seconds." 

B. Without Stop Words: ["system", "shall", 
"refresh", "display", "every", "60", 
"seconds"] 

 

Sample 2: 
 

A. Original: "The application shall match the 
color of the schema set forth by 
Department of Homeland Security." 

B. Without Stop Words: ["application", 
"shall", "match", "color", "schema", "set", 
"forth", "Department", "Homeland", 
"Security"] 

 

Sample 3: 
 

A. Original: "If projected the data must be 
readable. On a 10x10 projection screen 
90% of viewers must be able to read Event 
/ Activity data from a viewing distance of 
30." 

B. Without Stop Words: ["projected", "data", 
"must", "readable", "10x10", "projection", 
"screen", "90", "%", "viewers", "able", 
"read", "Event", "Activity", "viewing", 
"distance", "30"]. 

 

3.5.2 Latent Dirichlet Allocation (LDA) 
Analysis 

 

Sample 1: 
 

Topic Distribution (Before Removal): Topic 10 
("information") had the highest probability of 
0.4857. 
 

Sample 2: 
 

Topic Distribution (Before Removal): Topic 7 
("available") had the highest probability of 
0.9182. 
 

Sample 3: 
 

Topic Distribution (Before Removal): Topic 5 
("customer") had the highest probability of 
0.9471. 
 

3.6 Impact of Stop Word Removal 
 

Table 8 shows the Bag of Words (BoW) matrix 
for Sample 1 requirement before the removal of 
stop words, illustrating the frequency of terms 
used. 
 

Table 9 presents the topic distribution for Sample 
1 requirement before stop word removal, 
highlighting the top words and their probabilities 
within each topic. 
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Table 8. Bag of Words Matrix for Sample 1 
 

Document System shall Refresh display every 60 seconds 

Requirement 1 1 1 1 1 1 1 

 
Table 9. Topic Distribution for Sample 1 Requirement Before Removal of Stop Words 

 

Topic Index Topic TopWords Topic Distribution 

0 Topic 1 'user' 0.01666861 
1 Topic 2 'shall' 0.01666791 
2 Topic 3 'allow' 0.01667039 
3 Topic 4 'enable' 0.01666936 
4 Topic 5  'users' 0.01666877 
5 Topic 6 'select' 0.01666929 
6 Topic 7 'report' 0.01667186 
7 Topic 8 'send' 0.01666886 
8 Topic 9 'enter', 0.38092515 
9 Topic 10 'information' 0.48571981 

 
Table 10 displays the Bag of Words                      
(BoW) matrix for Sample 2 requirement before 
stop word removal, detailing the term 
frequencies. 
 
Table 11 provides the topic distribution for 
Sample 2 requirement before the                       
removal of stop words, showcasing the primary 
words and their associated probabilities for each 
topic. 
 
Table 12 illustrates the topic distribution for 
Sample 3 requirement prior to stop word 
removal, focusing on the significant words and 
their probabilities in each topic. 
 
Table 13 demonstrates the impact of stop word 
removal on topic modeling by comparing the top 
words and topic changes across several sample 
requirements. 
 
Removing stop words led to a more diverse topic 
distribution in the LDA analysis. The results show 
a clearer representation of underlying topics, as 
seen in the increased diversity of topics after 
stop word removal, improving topic modeling 
accuracy. 
 

4. RESULTS  
 
The results of feature extraction using the 
different techniques are presented in this 
Section. 
 

4.1 Feature Extraction 
 
Feature extraction is a critical step in 
transforming textual data into a numerical format 

that can be effectively used by machine learning 
models. In this stage, two prominent techniques 
are employed: TFIDF (Term Frequency-Inverse 
Document Frequency) and Word2Vec 
embeddings. This hybrid method provides a 
nuanced representation by integrating both term 
frequency and semantic relationships. 
 

4.2 TFIDF (Term Frequency-Inverse 
Document Frequency) 

 

The TFIDF score for a term 𝑡 in a document 𝑑 
within a corpus 𝐷 is calculated as follows; 
 

Term Frequency (TF): Measures how frequently 
a term appears in a document. The formula for 
TF is presented in Equation 2. 
 

𝑇𝐹(𝑡, 𝑑) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
 

 Equation 2 
 

Inverse Document Frequency (IDF): Measures 
how important a term is across the entire 
dataset. The formula for IDF is presented in 
Equation 3.  
 

The inverse of the document frequency is 
mathematically represented as follows: 
 

 𝑖𝑑𝑓𝑖= 

 𝑙𝑜𝑔 𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠_𝑤𝑖𝑡ℎ_𝑡𝑒𝑟𝑚𝑖𝑡𝑜𝑡𝑎𝑙_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠

 

Equation 3 

 
Combining these two metrics, the TF-IDF feature 
vector can be defined in Equation 4:  
 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑖,𝑗)  =  𝑡𝑓𝑖,𝑗 × 𝑖𝑑𝑓𝑖  

Equation 4 
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Table 10. Bag of Words Matrix for Sample 2 
 

Document Application Shall Match Color Schema Set Forth Department Homeland Security 

Requirement 1 1 1 1 1 1 1 1 1 1 

 
Table 11. Topic Distribution for Sample 2 requirement Before Removal of Stop Words 

 

Topic Index Topic Top Words Topic Distribution 

0 Topic 1 'shall' 0.0090939 
1 Topic 2 'user' 0.00909693 
2 Topic 3  'users' 0.00909187 
.. .. .. .. 
7 Topic 8 'use' 0.00909238 
8 Topic 9: 'display' 0.00909739 
9 Topic 10 'disputes' 0.00909338 

 
Table 12. Topic Distribution for Sample 3 requirement Before Removal of Stop Words 

 

Topic Index Topic Top Words Topic Distribution 

0 Topic 1 'shall' 0.00588262 
1 Topic 2 , 'product' 0.00588282  
2 Topic 3  'user' 0.00588295  
3 Topic 4 'able' 0.00588296  
4 Topic 5 'customer' 0.94705368  
5 Topic 6 'access' 0.00588312 
6 Topic 7 'request',  0.00588309  
7 Topic 8 'supervisors' 0.00588243  
8 Topic 9: 'ensure' 0.00588351  
9 Topic 10 'time' 0.00588281 
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Table 13. Impact of changes in Topics Modelling 
 

Requirement Text label kB kA Top Words 

'The system shall refresh the display every 60 seconds.' PE 9 9 ['user', 'shall', 'allow', 'enable', 'users', 'select', 'report', 
'send', 'enter', 'information'] 

'The application shall match the color of the schema set forth by 
Department of Homeland Security' 

LF 6 4 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available', 
'use', 'display', 'disputes'] 

'If projected the data must be readable.  On a 10x10 projection 
screen 90% of viewers must be able to read Event / Activity data 
from a viewing distance of 30' 

US 4 2 ['shall', 'product', 'user', 'able', 'customer', 'access', 
'request', 'supervisors', 'ensure', 'time'] 

'The product shall be available during normal business hours. As long 
as the user has access to the client PC the system will be available 
99% of the time during the first six months of operation.' 

A 6 3 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available', 
'use', 'display', 'disputes'] 

'If projected the data must be understandable. On a 10x10 projection 
screen 90% of viewers must be able to determine that Events or 
Activities are occuring in current time from a viewing distance of 100' 

US 4 8 ['shall', 'product', 'user', 'able', 'customer', 'access', 
'request', 'supervisors', 'ensure', 'time'] 

'The product shall ensure that it can only be accessed by authorized 
users.  The product will be able to distinguish between authorized 
and unauthorized users in all access attempts' 

SE 3 7 ['shall', 'product', 'player', 'shot', 'defensive', 'offensive', 
'grid', 'ship', 'hit', '99'] 

'The product shall be intuitive and self-explanatory. 90% of new users 
shall be able to start the display of Events or Activities within 90 
minutes of using the product.' 

US 6 4 ['shall', 'user', 'users', 'product', 'time', 'allow', 'available', 
'use', 'display', 'disputes'] 
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Here, tf represents the frequency of the term in 
the document, and idf is the inverse of the 
document frequency for term i and document j. 
Therefore, the term frequency-inverse document 
frequency (TF-IDF) is given in Equation 5 
 

𝑡𝑓 − 𝑖𝑑𝑓(𝑡𝑑, 𝑖𝑗) =
𝑡𝑓(𝑡𝑑,𝑖𝑗)𝑙𝑜𝑔 (

|𝐷|

𝑑𝑓(𝑡𝑖)
)

𝑑𝑗
         Equation 5 

 

The algorithm to compute TF-IDF is given below:  
 

Step 1: Inverse Document Frequency (IDF) 
Calculation 
 

Count the number of times each word appears in 
a sentence. 
 

Divide by the total number of words in the 
sentence. 
 

Step 2: Inverse Document Frequency (IDF) 
Calculation 
 
Count the number of sentences each word 
appears in. 
 

Divide the total number of sentences by this 
number. 
 

Take the logarithm of the result. 

Step 3: Weighted TF-IDF Calculation 

 
Multiply the TF and IDF values for each            
word. 

 
To compute the weighted TF-IDF Matrix, we 
would have to compute each TF-IDF across their 
𝑖, 𝑗 word. The word system in the first sentence of 
our first five requirement in the Promise 
explained corpus given below, 

 
"system shall refresh display every 60 seconds", 
"application shall match color schema set forth 
department homeland security", 

 
"if projected data must readable on 10x10 
projection screen 90 % viewers must able read 
event / activity data viewing distance 30", 
 
"the product shall available normal                          
business hours as long user access client                      
pc system available 99 % time first six months 
operation", 
 
"if projected data must understandable on 10x10 
projection screen 90 % viewers must able 
determine events activities occurring current time 
viewing distance 100" 

 

𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚,1  =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 ‘𝑠𝑦𝑠𝑡𝑒𝑚’ 𝑎𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 1 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 1
= 

1

6
       Equation 6 

 

𝐼𝐷𝐹𝑠𝑦𝑠𝑡𝑒𝑚  = log
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ ‘𝑠𝑦𝑠𝑡𝑒𝑚’
 = log

5

2
           Equation 7

  

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑠𝑦𝑠𝑡𝑒𝑚,1) =  𝑇𝐹𝑠𝑦𝑠𝑡𝑒𝑚,1 × 𝐼𝐷𝐹𝑠𝑦𝑠𝑡𝑒𝑚  =  (
1

6
) × log(

5

2
)            Equation 8 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑒𝑟𝑚𝑠𝑦𝑠𝑡𝑒𝑚,1) =
log(2.5)

6
= ≈

0.39794

6
 
1

6
× 0.39794 ≈ 0.06632            Equation 9 

 
The output of the TF-IDF stage is a weighted matrix for the Promise expanded dataset, with 
dimensions 969 x 2060. The matrix is shown below: 
 
                                                          Word1               Word2             ..    ..   ..      Word2060 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 (969𝑟𝑜𝑤𝑠)

(

 
 
 
 

𝑇𝐹 − 𝐼𝐷𝐹1,1 𝑇𝐹 − 𝐼𝐷𝐹1,2 . . . . . . 𝑇𝐹 − 𝐼𝐷𝐹1,2060
𝑇𝐹 − 𝐼𝐷𝐹2,1 𝑇𝐹 − 𝐼𝐷𝐹2,2 . . . . . . 𝑇𝐹 − 𝐼𝐷𝐹2,2060

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
𝑇𝐹 − 𝐼𝐷𝐹969,1 𝑇𝐹 − 𝐼𝐷𝐹969,2 . . . . . . 𝑇𝐹 − 𝐼𝐷𝐹969,2060)

 
 
 
 

 

 
The weighted TF-IDF matrix is sparse, with many zero entries due to the large number of unique 
terms and limited presence in individual documents. To simplify, only the top 10 words by their total 
TF-IDF score are presented. Fig. 4 displays a word cloud illustrating the importance of these terms 
across the dataset. 
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Fig. 4. Wordcloud of Words across Requirements 
 
The result of the top N=10 weighted T-IDF is presented in Table 14. 
 

Table 14. Weighted TF-IDF of Top N=10 words 
 

shall The system product user Allow users must able information 

0.1155 0.1171 0.1513 0 0 0 0 0 0 0 

0.0763 0.0774 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0.2405 0.1229 0 

0.0614 0.0622 0.0804 0.1065 0.1143 0 0 0 0 0 

0 0 0 0 0 0 0 0.2356 0.1203 0 

0.0709 0.0720 0 0.2462 0 0 0.3295 0 0.1578 0 

0.1328 0.0673 0 0.2304 0 0 0.1542 0 0.1477 0 

0.0855 0.0868 0 0.1484 0 0 0 0 0 0 

0.0855 0.0867 0.1120 0 0 0 0 0 0 0 

0.1154 0.1170 0.1512 0 0 0 0 0 0 0 

0.1372 0.1391 0.1797 0 0 0 0 0 0 0 

0.1481 0.1502 0.1940 0 0 0 0 0 0 0 

0.0701 0.0711 0 0 0 0 0 0 0 0 

0 0.0740 0 0 0 0 0 0 0 0 

 

4.3 Word2Vec 
 
Word2Vec was employed to generate vector 
representations of requirements text, enabling 
the capture of semantic relationships between 
words. We compared two models: Continuous 
Bag of Words (CBoW) and SkipGram, ultimately 
selecting the SkipGram model for its superior 
performance in identifying semantic similarities 
between requirements. This decision was based 
on its higher similarity scores, which better 
distinguished requirements within and across 
different classes, as demonstrated in Table 15. 
The effectiveness of the SkipGram model 
underscores its ability to enhance the accuracy 
of requirement classification in our adaptive 
management system. 
 
Table 15 presents the measure of similarity 
between each pair of the requirement. Fig. 5 is a 

scatter plot that compares semantic similarity 
scores between pairs of requirements            
using two models: CBoW and SkipGram. Each 
point shows the similarity score from CBoW on 
the x-axis and the score from SkipGram on the y-
axis. 
 
Red Points (LF - Look-and-Feel): For example, 
the pair R1-R2 has high similarity scores of 
0.9984 (CBoW) and 0.9995 (SkipGram), 
indicating strong agreement between the models. 
 
Blue Points (PE - Performance): For instance, 
the pair R3-R4 has scores of 0.9979 (CBoW) and 
0.9996 (SkipGram), also showing high similarity 
but slightly less agreement compared to the LF 
category. 
 
The vector representation for word w is 
exemplified in Table 16. 
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Fig. 5. Word2vec Measurement of Semantic Similarity 
 

Table 15. Word2Vec Measurement of Semantic Similarity 
 

Requirement 1 Requirement 2 Class CBoW SkipGram 

["'The", 'look', 'and', 'feel', 'of', 
'the', 'system', 'shall', 'conform', 
'to', 'the', 'user', 'interface', 
'standards', 'of', 'the', 'smart', 
'device', '.'] 

["'The", 'product', 'shall', 'have', 
'a', 'consistent', 'color', 'scheme', 
'and', 'fonts', '.'] 

LF 0.9984 0.9995 

["'The", 'system', 'shall', 'provide', 
'a', 'history', 'report', 'of', 
'changes', 'made', 'to', 'the', 
'Activity', 'or', 'Event', 'data'] 

["'The", 'system', 'shall', 'display', 
'both', 'the', 'active', 'and', 
'completed', 'order', 'history', 'in', 
'the', 'customer', 'profile', '.'] 

PE 0.9979 0.9996 

["'The", 'search', 'results', 'shall', 
'be', 'returned', 'no', 'later', '30', 
'seconds', 'after', 'the', 'user', 
'has', 'entered', 'the', 'search', 
'criteria'] 

["'The", 'search', 'for', 'the', 
'preferred', 'repair', 'facility', 
'shall', 'take', 'no', 'longer', 'than', 
'8', 'seconds', '.', 'The', 'preferred', 
'repair', 'facility', 'is', 'returned', 
'within', '8', 'seconds'] 

PE 0.9983 0.9995 

 
Table 16. Example of Word2Vec Vectors 

 

Word Vector Representation 

"login" [0.12, 0.34, -0.45, ...] 
"user" [0.22, -0.14, 0.33, ...] 

 
Word2Vec provides two main models: Continuous Bag of Words (CBOW) and Skip-Gram. 
 
CBOW Model: Predicts the target word based on its surrounding context words. The objective is to 
maximize the probability of the target word given its context: 
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𝑃(𝑤𝑡 ∣∣ 𝑤𝑡−𝑛, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑛 ) 
 
Skip-Gram Model: Predicts the surrounding context words given a target word. The goal is to 
maximize the probability of the context words given the target word: 
 

𝑃(𝑤𝑡−𝑛, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑛 ∣ 𝑤𝑡) 
 
In Word2Vec, each word is represented as a dense vector in a high-dimensional space, where 
semantically similar words have similar vector representations. The training parameters typically 
include vector size, window size, and minimum count, which control the dimensionality of the              
vectors, the size of the context window, and the minimum frequency of words to be considered, 
respectively. 
 

4.4 TF-IDF Weighted Word2Vec 
 
In Sections 3.5.1 and 3.5.2, we discussed TF-IDF and Word2Vec for converting text into numerical 
data. TF-IDF highlights word importance but lacks semantic context, while Word2Vec captures 
semantic meaning but ignores term importance. To combine their strengths, we propose a TF-IDF 
weighted Word2Vec approach. This method integrates TF-IDF’s term importance with Word2Vec’s 
semantic understanding by weighting Word2Vec vectors with TF-IDF scores, resulting in a more 
contextually relevant representation of each document. The final TF-IDF weighted Word2Vec matrix 
has dimensions 969 x 100, with 969 documents and 2060 unique words. The TF-IDF weighted 
Word2Vec representation is calculated through matrix multiplication of the TF-IDF representation and 
Word2Vec representations as shown in Equation 10 
 

𝑅 = 𝑇 ⋅ 𝑊                        Equation 10 
 

Each row in R is computed in Equation 3.19 
 

R𝑖 = ∑ 𝑇(𝑤𝑜𝑟𝑑,𝑖) .𝑊𝑤𝑜𝑟𝑑
2060
𝑗=1                       Equation 11 

 

Where: 
 

R𝑖 is the i-th row in 𝑅 

𝑇(𝑤𝑜𝑟𝑑,𝑖) is the TF-IDF weight of the i-th document 

𝑊𝑤𝑜𝑟𝑑  is the Word2Vec vector of the word 
 

The TF-IDF weighted Word2Vec representation matrix 𝑅 of size 969 x 100 is computed for each 
document. For example, the first requirement ("system shall refresh display every 60 seconds") is 
represented by expanding the equation as: 
 

𝑤𝑅(𝑑1) =  𝑇𝑠𝑦𝑠𝑡𝑒𝑚,1𝑊(𝑠𝑦𝑠𝑡𝑒𝑚) + 𝑇𝑠ℎ𝑎𝑙𝑙,1𝑊(𝑠ℎ𝑎𝑙𝑙) + 𝑇𝑟𝑒𝑓𝑟𝑒𝑠ℎ,1𝑊(𝑟𝑒𝑓𝑟𝑒𝑠ℎ) + 𝑇𝑑𝑖𝑠𝑝𝑙𝑎𝑦,1𝑊(𝑑𝑖𝑠𝑝𝑙𝑎𝑦) +

 𝑇𝑒𝑣𝑒𝑟𝑦,1𝑊(𝑒𝑣𝑒𝑟𝑦) + 𝑇60,1𝑊(60) + 𝑇𝑠𝑒𝑐𝑜𝑛𝑑𝑠,1𝑊(𝑠𝑒𝑐𝑜𝑛𝑑𝑠)     

 
This process is repeated for the entire dataset, 
resulting in a final matrix with 969 rows and 100 
features. 
 

5. FEATURE SELECTION 
 
In the feature selection process, PCA and 
ANOVA were used to refine the TF-IDF weighted 
Word2Vec data obtained in Section 4.3.  
 

5.1 PCA (Principal Component Analysis) 
 
Principal Component Analysis (PCA) was 
employed to reduce the high-dimensional data 

derived from the TF-IDF weighted Word2Vec 
representations, resulting in a more efficient and 
interpretable dataset for further analysis and 
modeling. 
 
Dimensionality Reduction: The initial dataset 
consisted of a high-dimensional feature space 
with 100 features for each of the 969 
requirements, generated from the TF-IDF 
weighted Word2Vec embeddings. PCA was 
applied to reduce these 100 features to 30 
dimensions, balancing the retention of significant 
variance in the data with the need for 
computational efficiency. 
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Feature Extraction: Through PCA, new features 
(principal components) were extracted, 
representing linear combinations of the original 
features. These principal components were 
uncorrelated and captured the most variance 
within the dataset, highlighting the most 
informative aspects of the data. This 
transformation set the stage for enhancing the 
performance of subsequent machine learning 
models. 
 

5.2 ANOVA (Analysis of Variance) 
 

Following PCA, Analysis of Variance (ANOVA) 
was applied to evaluate the relevance of the 
transformed features in relation to the class 
labels (target variable): 
 

Significance Testing: Features were assessed 
based on their F-statistic values, with a 
significance threshold set at p-value < 0.05. High 
F-statistic values indicate features that are most 
relevant to the classification task. 
 

Feature Selection: Based on the F-statistic 
results, significant features were selected for 
further analysis and model training, enhancing 
the predictive performance and reducing 
computational complexity. 
 

The Mathematical Representation of the ANOVA 
F-statistic for feature f is given in Equation 12. 
 

𝐹 =
(𝑊𝑖𝑡ℎ𝑖𝑛−𝐶𝑙𝑎𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

(𝐵𝑒𝑡𝑤𝑒𝑒𝑛−𝐶𝑙𝑎𝑠𝑠 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)
        Equation 12 

 

F-Statistic Results: The F-statistic results for 
the features selected from the TF-IDF weighted 
Word2Vec embeddings are presented in Table 
17. This table includes the Sum of Squares 

Between (SSB), Sum of Squares Within (SSW), 
Mean Square Between (MSB), Mean Square 
Within (MSW), and the F-statistic for each 
feature. 
 
Features from the PCA results are ranked            
based on their F-statistic values. A higher                      
F-statistic indicates a more significant             
difference between groups, suggesting that the 
feature is more relevant. A significance threshold 
set at a value of p-value < 0.05 is applied to 
select features with statistically significant 
differences. 
 
Selection of Significant Features: Based on 
the F-statistic results, features with higher F-
statistic scores indicate a greater ability to 
distinguish between classes. In this case, 
Feature9 and Feature3 were identified as the 
most significant features due to their high F-
statistic values (112.6935 and 19.8414, 
respectively). These features were selected for 
further analysis and model training, while 
Feature2 and Feature14 were deemed less 
significant and not selected. 
 

Top Selected Features: The top ten features 
selected from the TF-IDF weighted Word2Vec 
embeddings across different datasets are 
summarized in Table 18. The Table lists the 
features that were most relevant to the class 
labels. 
 

Table 19 summarizes the ANOVA results, 
indicating the significance of each feature based 
on the calculated p-values. Features with lower 
p-values < 0.05 are considered statistically 
significant in distinguishing between classes.

 
Table 17. F-Statistic Results for Selected Features 

 
Features SSB SSW MSB MSW F-Statistic 

Feature2 1.89e-05 3.47e-05 6.29e-06 2.89e-06 2.1732 
Feature3 0.001066 0.00022 0.00036 1.79e-05 19.8414 
Feature9 0.00091 3.23e-05 0.00030 2.69e-06 112.6935 
Feature14 6.55e-05 2.134e-05 1.55170 1.78e-06 8.7262 

 
Table 18. Top Ten Features 

 
Dataset Count Top Ten Features 

tfidf_w2v-
12 

100 feature53, feature62, feature92, feature76, feature27, feature25, feature6, 
feature44, feature52, feature77 

tfidf_w2v-
11 

100 feature53, feature27, feature6, feature62, feature44, feature9, feature57, 
feature52, feature25, feature89 

tfidf_w2v-2 11 feature25, feature92, feature2, feature76, feature14, feature66, feature67, 
feature53, feature36, feature3 
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Table 19. ANOVA Results 
 

Feature F-Statistic p-value 

Feature2 2.1732 0.1442 
Feature3 19.8414 0.0000605 
Feature9 112.6935 0.00000000469 
Feature14 8.7262 0.0024 

 

6. CONCLUSION 
 

This study demonstrates the effectiveness of 
integrating semantic feature extraction, advanced 
feature selection, and topic modeling to enhance 
adaptive management strategies in agile 
software development. By employing TF-IDF 
weighted Word2Vec for feature extraction and 
Latent Dirichlet Allocation (LDA) for topic 
modeling, we significantly improved the semantic 
representation of requirements and the clarity of 
the requirement text used to describe user 
needs. To address the challenge of high-
dimensional embeddings from TF-IDF weighted 
Word2Vec, Principal Component Analysis (PCA) 
was applied to reduce the feature space from 
100 dimensions to 30. Additionally, ANOVA was 
used to select the top 3 features that best 
capture the semantic characteristics of the 
dataset. 
 

PRACTICAL IMPLICATIONS 
 

The methodologies applied in this study have 
practical implications for the software 
development industry, particularly in Agile 
environments. By improving precision and recall 
scores for functional requirements (F), the study 
demonstrates an enhanced ability to manage the 
predominant class of requirements effectively. 
Additionally, SMOTE’s application helped 
address class imbalance, improving the handling 
of minority requirement types. These approaches 
can be directly applied in real-world scenarios to 
enhance the accuracy and efficiency of 
requirement management, contributing to more 
reliable and adaptive software development 
processes. 
 

LIMITATIONS 
 

Despite the progress made, the study has certain 
limitations. It focused primarily on text-based 
requirements, potentially overlooking the 
complexity of non-textual data such as diagrams 
or models in Agile projects. Moreover, while 
SMOTE was effective in balancing the dataset, 
the synthetic generation of minority class 
examples may not fully capture the nuances of 
actual requirements. 

FUTURE WORK 
 

Future research should explore integrating multi-
modal data, including visual and diagrammatic 
representations, to extend the model's 
applicability. Investigating alternative techniques 
for handling class imbalance beyond SMOTE 
could lead to more robust models. Additionally, 
the features selected in this study will be used for 
predicting requirements via machine learning 
models, enhancing adaptive requirement 
management strategies. Expanding the study to 
include a broader range of datasets from               
various domains could also provide insights              
into the generalizability of the proposed  
methods. Addressing these gaps will              
advance the development of adaptive 
requirement management strategies in agile 
environments.  
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