

Asian Journal of Advanced Research and Reports

Volume 18, Issue 6, Page 10-20, 2024; Article no.AJARR.114874 ISSN: 2582-3248

A Normalised Difference Vegetation Index Model for Maize Crop Performance Monitoring and Cropland Area Mapping in Sudan Ecological Zone of Nigeria

Onyibe, J. E. ^a, Wahab, A. A. ^a, Dahiru B. ^a, Durojaiye, L. O. ^a and Muibi, K. H. ^{b*}

 ^a National Agricultural Extension and Research Liaison Services, Ahmadu Bello University, Zaria, Nigeria.
 ^b National Space Research and Development Agency, COPINE Centre, OAU, Ile-Ife, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJARR/2024/v18i6649

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/114874

Original Research Article

Received: 01/02/2024 Accepted: 04/04/2024 Published: 15/04/2024

ABSTRACT

The monitoring and mapping of crops remotely are critical for easy identification of stressed crop, prompt response to part of the crop field that requires immediate attention and the potential harvest as well as for agricultural field management. Optical remote sensing offers one of the most attractive options for vegetation indices evaluation and some optical remote sensing data are readily available free for this application, especially, Sentinel-2A, which is equipped with a multispectral sensor (MSI), which enables calculation of some vegetation indices and assessment

Asian J. Adv. Res. Rep., vol. 18, no. 6, pp. 10-20, 2024

^{*}Corresponding author: Email: muibikolawole2015@gmail.com;

of vegetation health and status. However, serious attention has not been given to the potential of vegetation indices calculated from MSI data in the developing countries. Nigeria inclusive. Thus, the study therefore calculated the time series NDVI for the length of the growing season for the selected crops (Maize) and geometrically calculated area of the farm plot size. In this study. The study used the Normalized Difference Vegetation Index and Supervised Image classification technique for the crop health assessment and cropland area mapping for maize. The result showed the mean, standard deviation, range, minimum and maximum NDVI values for all the farm plots over the growing season from planting period to the harvesting period for the selected crop. The average NDVI value in May which marks the onset of the growing season for maize in the study area ranges from 0.044 to 0.148. In July, which represents the period of the grain filing stage ranges from 0.136 to 0.348 and in August, which is the maturity stage for harvest ranges from 0.110 to 0.450. Also, it was observed that cropland area is 194.973269 Square Km. It is therefore evident that the results of our NDVI analysis and cropland area mapping are good insights into solving national agricultural planning problems and agricultural resources allocation for effective agricultural practices for national food security. Our results showed that vegetation indices had the greatest contributions in identifying specific crop types and crop conditions during the growing season.

Keywords: Crop performance; NDVI; Sentinel-2; cropland area.

1. INTRODUCTION

The monitoring and mapping of crops remotely are critical for easy identification of stressed crop, prompt response to part of the crop field that requires immediate attention and the potential harvest as well as for agricultural field management. Optical remote sensing offers one of the most attractive options for vegetation indices evaluation and some optical remote sensing data are readily available free for this application, especially, Sentinel-2A, which is equipped with a multispectral sensor (MSI), offers some vegetation indices calculated to assess vegetation status.

A Normalised Difference Vegetation Index (NDVI) of a crop or a plant estimated regularly over the growing season periods of a crop can reveal a lot about the changes in that crop conditions [1,2,3]. In other words, we can use NDVI to evaluate plant health remotely. The Normalized Difference Vegetation Index (NDVI) measures the greenness and the density of the vegetation captured in a satellite image [4]. Healthy vegetation is characterized by a spectral reflectance curve in which the value is positive and this can be discovered by calculating the difference between two bands - visible red and near-infrared [5,6,7]. NDVI is that difference expressed as a number ranging from -1 to 1. A sudden drop in the NDVI values may be a symptom of crop health deterioration.

The value drop can also correspond to normal changes, such as the time of harvesting, which is why NDVI should be counter-checked against

other available data. Correct NDVI values interpretation can help agronomists raise healthier yields, save money on fertilizers, and take a better care of the environment. The input data for NDVI are multispectral satellite Image containing Near Infrared band and Red band.

Satellite imagery, is Earth observation imagery. They are images of the Earth, collected by imaging satellites or Unmanned Ariel Vehicle (UAV) called drones, and these pictures form wide or narrow areas for observation. In Nigeria, the agency responsible for taking a wide satellite imagery area is the National Space Research and Development Agency (NASRDA). However, small-area imagery can come from UAV. The images include crops, livestock, building, water bodies. and any object on Earth. The Convolutional Neural Network (CNN) algorithm model can filter and classify these images and estimate the Area covered by each object. Similarly, the CNN algorithm focuses on crops through their chlorophyll contents and data collected through ground truthing and those for crop output for the Area under consideration.

Time series of normalized-difference-vegetationindex (NDVI), derived from the satellite data, have been used for crop yield predictions since the 1980's [1,8,9,10]. Most of the studies that related NDVI measurements to crop yield have been concentrated on staple crops such as wheat maize and rice [7,8,11]. Many researchers have also found that NDVI variables are very good at grain yield predictors. Although the interannual variability of NDVI (probably due to unexpected weather conditions or disasters) can reveal crop yield fluctuations; however, remotely sensed NDVI cannot detect those humaninduced factors that increased some crop yield.

1.1 Statement of Research Problem

There has been a loss of significant maize yield to pest, disease and climate as a result of a lack of accurate, timely and first-hand information about the crop condition on the farm. The manual survey is laborious and time-consuming. Remote Sensing technology through Normalized Difference Vegetation Index model provides a better alternative to crop monitoring during the growing season especially when a large area is involved for crop optimum yield. Hence, this study.

1.2 The Aim of the Study

The study aims to use satellite imagery to estimate the Normalized Difference Vegetation index for maize crop monitoring in Sudan Ecological Zone of Nigeria.

1.3 The Objectives of the Study are to

- a. Map the cropland area for the study area.
- b. Generate the NDVI to monitor the performance of the maize crop from the Earth Observation Satellite Image in sudan ecological zone of Nigeria.
- c. Document the technical details of the algorithm for future reference by other users and replications for other crops.

2. METHODOLOGY

2.1 Study Area

The study area lies between latitude 11° 8¹ 4.034¹¹ to 11° 53¹ 16.372¹¹ and longitude 7° 21¹ 51.831¹¹ to 8° 10¹ 48.902¹¹. This contains the three states; Kano, Kaduna and Kastina and the selected LGAs in these three States are the six LGAs that lie interface between these three States where they share boundary. These selected LGAs include; Kudan, Markafi, Danja, Rogo Kafur and Karaye. The study area has an area of approximately 3828.49 km².

Fig. 1. Study area map

2.2 Data Types and Sources

Primary and secondary data were used for the study.

2.3 Primary Data

These include the use of questionnaires loaded into ODK apps to seek information from the farmers about the conditions of their farm and their agronomic practices. The GPS coordinates of the perimeter of their farm's plots were also collected using Germine GPS receiver. The perimeter coordinates of 1080 farms were collected with the aid of handheld Globe Positioning System Receiver from six local governments (Rogo, kudan, markafi, Ranja) that lies interface between the three selected states, (Kano, Kaduna and Kastina) in Nigeria. The name of the farmer, the planted crop and phone number were documented for follow-up and yield harvest weighing and documentation as one of the major input in the yield estimate model.

2.4 Secondary Data

Satellite Images were acquired for NDVI Analysis. These include Sentinel satellite 2A and 2B and landsat 8 and Landsat 9 satellite image acquired for the study area from the planting period, may 2022 to the period of harvesting, September, 2022.

1.Sentinel satellite image: Sentinel-2 is an Earth observation mission from the Copernicus Programme that systematically acquires optical imagery at high spatial resolution (10 m to 60 m) over land and coastal waters. The mission is currently a constellation with two satellites, Sentinel-2A and Sentinel-2B with the two images having a revist period of 5 days and 10days as single constellation. The mission supports a broad range of services and applications such as agricultural monitoring, emergency management, land cover classification or water quality.

2.5 Landsat Satellite Image

Since one of the major limitations of the optical remote sensor is cloud cover, we decided to acquire landsat satellite images with 30m spatial resolution that are closer to the needed date of sentinel data and are relatively free from cloud cover as a replacement for date of sentinel data that are affected by cloud. The landsat8 and landsat 9 with path 189 and row 52 and sentinel with upper right and lower left coordinates 12 N, 7E and 11 30'18.84" N and 7 48'19.64" E respectively were acquired. Table 1 below shows the acquired Sentinel and Landsat Satellite Image that were used for the study.

Table 1. Satellite Data Acquisition for the Study with dates

S/N	Satellite Image Date	Satellite Image Type	Revisit Period
1	02/05/2022	Sentinel 2A	5 days with 2B
2	07/05/2022	Sentinel 2B	5 days with 2A
3	22/05/2022	Sentinel 2A	5 days with 2B
4	27/05/2022	sentinel 2B	5 days with 2A
5	03/05/2022	Landsat 8 (OLI)	8 days with landsat 9
6	11/05/2022	Landsat 9 (OLI)	8 days with landsat 8
7	19/05/2022	Landsat 8 (OLI)	8 days with landsat 9
8	27/05/2022	Landsat 9 (OLI)	8 days with landsat 8
9	01/06/2022	Sentinel 2A	5 days with 2B
10	04/06/2022	Landsat 8 (OLI)	8 days with landsat 9
11	12/06/2022	Landsat 9 (OLI)	8 days with landsat 8
12	20/06/2022	Landsat 8 (OLI)	8 days with landsat 9
13	28/06/2022	Landsat 9 (OLI)	8 days with landsat 8
14	06/07/2022	Landsat 8 (OLI)	8 days with landsat 9
15	14/07/2022	Landsat 9 (OLI)	8 days with landsat 8
16	22/07/2022	Landsat 8 (OLI)	8 days with landsat 9
17	07/08/2022	Landsat 8 (OLI)	8 days with landsat 9
18	05/08/2022	sentinel 2A	5 days with 2B
19	10/08/2022	Sentinel 2B	5 days with 2A
20	30/08/2022	sentinel 2A	5 days with 2B
21	08/09/2022	Landsat 8 (OLI)	8 days with landsat 9
22	24/09/2022	Landsat 8 (OLI)	8 days with landsat 9

3. DATA ANALYSIS

The perimeter coordinates of all the farm plots were plotted as points and these were used to digitize all the farm plots as polygon using geographic information system platform. For accuracy purposes, the GPS coordinates of the perimeters of each plot taken on the field were labelled in Excel as A1, B1, C1, D1 to An, Bn, Cn, Dn. This means plot one was labelled as A1, B1, C1, D1 to plot 1080 which was labelled as A1080, B1080, C1080, D1080.

3.1 Normalized Difference Vegetation Index (NDVI) Analysis

Since one of the objectives of the study is to generate the indices that simplify Ag-statistics estimation, we therefore analysed the time series Normalised Difference Vegetation Index (NDVI) value per farm plot from planting period to harvest period.

The Normalized Difference Vegetation Index (NDVI) for the entire study area was calculated using the NDVI algorithm.

The following equation was used.

$$NDVI = \frac{\text{NIR} - \text{RED}}{NIR + RED}$$

NIR = Near infrared band of the satellite image RED = RED band of the satellite image

In sentinel satellite image, band 8 represents Near Inrared (NIR) while band 4 represents RED. Therefore, NDVI calculation for sentinel data = band 8 - band 4/ band 8 - band 4 and for landsat data, NDVI = (band 5 - band 4)/(band 5 - band 4). This implies that NIR for landsat correspond to band 5 while RED corresponds to band 4. For the generation of average NDVI for farm plots, all the digitized farm plot polygons were overlaid on the NDVI layer for the selected LGAs and the average NDVI was generated for each plot for maize, using the zonal statistics tool within Geographic Information System Platform.

4. RESULTS AND DISCUSSION

The study showed the time series NDVI for the length of the growing season for the selected crops (Maize) and the geometrically calculated area of the farm plot size. The study revealed the NDVI statistics for maize from may, 2022 (day of planting period) to September 2022 (Day of

harvesting period). These statistics include the mean, standard deviation, range, minimum and maximum NDVI values for all the farm plots over the growing season from the planting period to the harvesting period for the selected crops. The average NDVI value in May which marks the onset of the growing season for maize in the study area ranges from 0.044 to 0.148. In july, which represents the period of the grain filing stage ranges from 0.136 to 0.348 and in August, which is the maturity stage for harvest ranges from 0.110 to 0.450. These approaches assume that measures of the photosynthetic capacity from spectral-vegetation indices are directly related to crop yield. This assumption is used because many of the conditions that affect crop growth, development and ultimately yield could be captured through spectra measurements such as the NDVI [12].

The supervised classification of the satellite image for land use landcover reveals that the cropland area for the cultivation of arable crops in the selected six LGAs is 194.973269 square Kilometer. These areas are found mostly along rivers network and near the dam area; the area with sufficient water for farming. This cropland landcover classes area and other are documented in the Table 2. The Fig. 2 is the map showing the area for arable crop farming otherwise known as cropland area in the study area

4.1 Limitation to the Generation of the NDVI Statistical Values for all the farm Plots

The total number of farm plots selected for the study and whose coordinates were collected are 327 plots for the the selected crops. The zonal statistics tool within Geographic Information System platform was able to generate the NDVI statistical values for plots whose sizes are greater than the pixel size of each of the two satellite images used for the study. Landsat image has 30m by 30m spatial resolution while sentinel image has 10m by 10m spatial resolution. This means that a single pixel of Landsat satellite image measures 30m x30m as a square pixel and sentinel measures 10m x 10m as a square pixel. NDVI values were not generated for many farm plot that is not big enough to accommodate minimum of a single pixel within it. The area of some farm plots are less than 30 meter by 30 meter in size. For that reason, the Zonal statistics tool could not generate NDVI statistics for those plots. This

Onyibe et al.; Asian J. Adv. Res. Rep., vol. 18, no. 6, pp. 10-20, 2024; Article no.AJARR.114874

accounts for variations in the number of plots whose NDVI were generated. For, Sentinel image, between 250 to 327 plots were generated for the selected crop. This number becomes lesser for Landsat images because of its lower spatial resolution (30m X30m) which does not allow NDVI statistical values generation from zonal statistics for many farm plots smaller than the image pixel size of 30m by 30m as some of the farm plots sizes are lesser than 30m by 30m in area. It should be noted that for the successful generation of average NDVI for a polygon using zonal statistics, minimum of a pixel or more must fall within the polygon that represents farm plots. This is not the case for some plots in some of our plots. see Picture 1 below.

The bigger farm plot at the centre contains more than one pixel and average NDVI value can be calculated for it using zonal statistics, other surrounding pixels were omitted from the calculation automatically by the GIS platform tool used.

Picture 1. Farm plots overlay on the landsat Pixel of 30m by 30m resolution

Table 2.	Landuse	landcover	for mapping	for cropl	and area a	and other	land cover	estimation

Landuse Landcover classes	Area in Square Kilometer
Cropland Area	194.973269
Vegetation Area	901.76134
Grassland Area	200.8880
waterbody coverage	48.1059
Bareland Area	2417.4291
Settlement Area	64.8444
Total	3828.0021

Fig. 2. Landcover area showing cropland area (July, 2022)

5. CONCLUSION

The study has successfully demonstrated the capability of NDVI model for crop monitoring and has given a guide into the calculation of cropland area quantification and yield value estimation from the field. It is therefore evident that the results of our NDVI analysis and cropland area mapping are good insights into solving national agricultural planning problems and agricultural resources allocation for effective agricultural practices for national food security.

ACKNOWLEDGEMENT

This research was funded by TETFUND with reference number NRF/TETFUND/DR&D_CE/NRF/2019/NRF_SET I-SST_00029.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Mkhabela MS, Bullock P, Raj S, Wang S, Yang Y. Crop yield forecasting on the canadian prairies using MODIS NDVI data. Agricultural and Forest Meteorology. 2011;151:385–393.
- Holden CE, Woodcock CE, An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations, Remote Sensing of Environment. 2016;185:16-36. DOI: 10.1016/j.rse.2016.02.052.
- Esquerdo J, Žullo J, Antunes JFG. Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing. 2011;32:3711–3727.
- Crippen RE, Calculating the vegetation index faster, Remote Sensing of Environment. 1990;34: 71-73. DOI: 10.1016/0034-4257(90)90085-Z.
- Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sensing of Environment. 2004;90:337-352. DOI: 10.1016/j.rse.2003.12.013.
- Wang F-M, Huang J-F, Tang Y-L, Wang X-Z, New vegetation index and Its application in estimating leaf area index of rice, Rice Science. 2007;14:195-203.

DOI: 10.1016/S1672-6308(07)60027-4

- Immitzer M, Vuolo F, Atzberger C, First experience with sentinel-2 data for crop and tree species classifications in central Europe, Remote Sensing. 2016; 8:27. DOI: 10.3390/rs8030166.
- Wang X, Mochizuki K, Yamaya Y, Tani H, 8. R. Kobayashi N. Sonobe Crop classification Sentinel-2-derived from vegetation indices using ensemble learning, J. Appl. Remote Sens. 2018;12: 026019.
- Schut AGT, Stephens DJ, Stovold RGH, Adams M, Craig RL. Improved wheat yield and production forecasting with a moisture stress index, AVHRR and MODIS data. Crop & Pasture Science. 2009;60: 60–70.
- Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 1979;8:127–150. 65.
- 11. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–677.
- 12. Tucker CJ. Monitoring corn and soybean crop development with hand-held radiometer spectral data, Remote Sensing of Environment. 1979;8:237-248.

DOI: 10.1016/0034-4257(79)90004-X

APPENDIX

Ndvi for 7th august 2022 of the growing season for maize plots

PLOT ID	MEAN	PLOT AREA	MIN	MAX	STD
A1	0 13926321268	899 45436458600	0 13926321268	0 13926321268	0.0000000000
Δ10	0.10020021200	899 45436458600	0.10020021200	0.10020021200	0.0000000000000000000000000000000000000
A100	0.14174500452	1708 00872017000	0.141/3371582	0.14174300432	0.0000000000000000000000000000000000000
A1004	0.1414/070733	1708 00872017000	0.14140071002	0.14130770003	0.0000000000000000000000000000000000000
A1004 A101	0.15140222013	1790.90072917000 900 45426459600	0.15009402559	0.15210901007	0.00070739034
A101	0.15592500447	2608 26200276000	0.15592500447	0.15592500447	0.000000000000
A1015	0.15000873530	2698.36309376000	0.15571418405	0.15035313094	0.00026321934
A1016	0.15649241209	899.45436458600	0.15649241209	0.10649241209	0.00000000000
A1018	0.14662317187	1798.90872917000	0.14513364434	0.14811269939	0.00148952752
A102	0.14855803549	899.45436458600	0.14855803549	0.14855803549	0.00000000000
A104	0.17707353830	899.45436458600	0.17707353830	0.17707353830	0.00000000000
A105	0.14678984880	899.45436458600	0.14678984880	0.14678984880	0.00000000000
A1054	0.16403548420	1798.90872917000	0.16340593994	0.16466502845	0.00062954426
A106	0.17948380609	2698.36309376000	0.17912340164	0.1/98//16198	0.00030860224
A108	0.20109967887	899.45436458600	0.20109967887	0.20109967887	0.00000000000
A110	0.17892807722	899.45436458600	0.17892807722	0.17892807722	0.00000000000
A113	0.18790673465	1798.90872917000	0.18659539521	0.18921807408	0.00131133944
A116	0.18698866665	899.45436458600	0.18698866665	0.18698866665	0.00000000000
A118	0.17366736382	1798.90872917000	0.17335635424	0.17397837341	0.00031100959
A119	0.17950771749	899.45436458600	0.17950771749	0.17950771749	0.00000000000
A12	0.16886410117	1798.90872917000	0.16823667288	0.16949152947	0.00062742829
A121	0.10782401264	1798.90872917000	0.10758144409	0.10806658119	0.00024256855
A132	0.10544826835	899.45436458600	0.10544826835	0.10544826835	0.00000000000
A140	0.11193363369	899.45436458600	0.11193363369	0.11193363369	0.0000000000
A144	0.11425574124	899.45436458600	0.11425574124	0.11425574124	0.00000000000
A146	0.11532562971	899.45436458600	0.11532562971	0.11532562971	0.0000000000
A148	0.11176078767	899.45436458600	0.11176078767	0.11176078767	0.00000000000
A151	0.10083807260	899.45436458600	0.10083807260	0.10083807260	0.00000000000
A152	0.10238801688	899.45436458600	0.10238801688	0.10238801688	0.00000000000
A154	0.09897122532	899.45436458600	0.09897122532	0.09897122532	0.00000000000
A157	0.10220589489	899.45436458600	0.10220589489	0.10220589489	0.00000000000
A162	0.10598595440	899.45436458600	0.10598595440	0.10598595440	0.00000000000
A164	0.11186741293	899.45436458600	0.11186741293	0.11186741293	0.00000000000
A176	0.26767274737	899.45436458600	0.26767274737	0.26767274737	0.00000000000
A18	0.29449737072	899.45436458600	0.29449737072	0.29449737072	0.00000000000
A181	0.25789234042	899.45436458600	0.25789234042	0.25789234042	0.00000000000
A184	0.25644972920	899.45436458600	0.25644972920	0.25644972920	0.00000000000
A185	0.29445992410	1798.90872917000	0.28795376420	0.30096608400	0.00650615990
A188	0.26397818327	1798.90872917000	0.24644234777	0.28151401877	0.01753583550
A190	0.34810924530	1798.90872917000	0.33905982971	0.35715866089	0.00904941559
A2	0.24329774082	899.45436458600	0.24329774082	0.24329774082	0.00000000000
A20	0.24682566524	899.45436458600	0.24682566524	0.24682566524	0.00000000000
A209	0.29401591420	899.45436458600	0.29401591420	0.29401591420	0.00000000000
A215	0.24356879294	899.45436458600	0.24356879294	0.24356879294	0.0000000000
A217	0.17863185704	1798.90872917000	0.17798496783	0.17927874625	0.00064688921
A218	0.19077120721	899.45436458600	0.19077120721	0.19077120721	0.0000000000
A219	0.10654556751	899.45436458600	0.10654556751	0.10654556751	0.0000000000
A220	0.10603779554	899.45436458600	0.10603779554	0.10603779554	0.0000000000
A221	0.10836653411	899.45436458600	0.10836653411	0.10836653411	0.00000000000
A225	0.11195071042	899.45436458600	0.11195071042	0.11195071042	0.00000000000
A228	0.22399620712	1798.90872917000	0.22185736895	0.22613504529	0.00213883817
A23	0.23622027040	899.45436458600	0.23622027040	0.23622027040	0.00000000000
A231	0.23511219025	899.45436458600	0.23511219025	0.23511219025	0.00000000000
A245	0.19331499189	1798.90872917000	0.19316601753	0.19346396625	0.00014897436
A248	0.17721877992	899.45436458600	0.17721877992	0.17721877992	0.00000000000
A251	0.15826086700	899.45436458600	0.15826086700	0.15826086700	0.00000000000
A256	0.16633579135	1798.90872917000	0.16501593590	0.16765564680	0.00131985545
A258	0.15447002649	899.45436458600	0.15447002649	0.15447002649	0.00000000000
A26	0.16038756073	899.45436458600	0.16038756073	0.16038756073	0.00000000000
A269	0.09009949863	899.45436458600	0.09009949863	0.09009949863	0.00000000000
A27	0.09234933555	899.45436458600	0.09234933555	0.09234933555	0.0000000000
A271	0.09415970370	1798.90872917000	0.09317588061	0.09514352679	0.00098382309
A276	0.10242915899	899.45436458600	0.10242915899	0.10242915899	0.00000000000

Onyibe et al.; Asian J. Adv. Res	. Rep., vol.	18, no. 6, pp.	10-20, 2024; Article no.	.AJARR.114874
----------------------------------	--------------	----------------	--------------------------	---------------

A29	0.08196467906	899.45436458600	0.08196467906	0.08196467906	0.00000000000
A292	0 09002025425	2698 36309376000	0 08784449846	0 09203518927	0 00171461752
A204	0.08624005007	1708 00872017000	0.08507712210	0.08650477076	0.00026382878
A204	0.00024093097	1790.90072917000 900 45426459600	0.00097712219	0.00050477570	0.00020302070
A295	0.00904000752	099.45430450000	0.00904000752	0.00904000752	0.0000000000
A30	0.08888144791	899.45436458600	0.08888144791	0.08888144791	0.00000000000
A300	0.08501851559	899.45436458600	0.08501851559	0.08501851559	0.00000000000
A32	0.27638876438	1798.90872917000	0.26802679896	0.28475072980	0.00836196542
A327	0.30194437504	899.45436458600	0.30194437504	0.30194437504	0.00000000000
A331	0 31330499053	899 45436458600	0 31330499053	0 31330499053	0 00000000000
A34	0.20405852150	2608 36300376000	0.28264573216	0.30070057511	0.00810614085
A34 A340	0.29403032139	2090.30309370000	0.20204373210	0.30070037311	0.00010014005
A340	0.36071750522	699.45456456600	0.36071750522	0.30071730322	0.0000000000
A381	0.07819567248	1798.90872917000	0.07801472396	0.07837662101	0.00018094853
A382	0.33115391433	1798.90872917000	0.32762527466	0.33468255401	0.00352863967
A385	0.38100486994	899.45436458600	0.38100486994	0.38100486994	0.00000000000
A386	0.40484187007	1798.90872917000	0.39630633593	0.41337740421	0.00853553414
A387	0.37113589048	1798,90872917000	0.35873800516	0.38353377581	0.01239788532
A39	0 29695444306	2698 36309376000	0 29027596116	0 30070137978	0.00473411774
A 201	0.35257643461	800 45436458600	0.35257643461	0.35257643461	0.0000000000
A391	0.00207040401	099.45430430000	0.33237043401	0.0040000000	0.00000000000
A394	0.38493388891	899.45436458600	0.38493388891	0.38493388891	0.00000000000
A4	0.18325544894	899.45436458600	0.18325544894	0.18325544894	0.00000000000
A42	0.24878650904	899.45436458600	0.24878650904	0.24878650904	0.00000000000
A421	0.20501488447	899.45436458600	0.20501488447	0.20501488447	0.00000000000
A436	0.30056828260	899.45436458600	0.30056828260	0.30056828260	0.00000000000
A441	0 31433460116	899 45436458600	0 31433460116	0 31433460116	0 00000000000
Δ <i>11</i> 5	0.27231067/19	899 45436458600	0.27231067/19	0.27231067/10	0.00000000000
A 4 4 0	0.22694750407	800 45426458600	0.22694750407	0.27201007410	0.00000000000
A440	0.23064750497	899.45450458000	0.23084750497	0.23004730497	0.0000000000
A452	0.22307588160	899.45436458600	0.22307588160	0.22307588160	0.00000000000
A453	0.22624179721	899.45436458600	0.22624179721	0.22624179721	0.00000000000
A454	0.25155021250	1798.90872917000	0.25016731024	0.25293311477	0.00138290226
A458	0.26660099626	899.45436458600	0.26660099626	0.26660099626	0.00000000000
A465	0.24619117379	899.45436458600	0.24619117379	0.24619117379	0.00000000000
A476	0 26294896007	899 45436458600	0 26294896007	0 26294896007	0 00000000000
Δ <i>1</i> 78	0.25524854660	899 45436458600	0.25524854660	0.25524854660	0.00000000000
A470 A407	0.20024004000	800 45436458600	0.26445462200	0.20024004000	0.00000000000
A487	0.26445463300	899.45436458600	0.26445463300	0.26445463300	0.0000000000
A49	0.26535376906	1798.90872917000	0.25646054745	0.27424699068	0.00889322162
A490	0.30567494035	1798.90872917000	0.29830718041	0.31304270029	0.00736775994
A491	0.27106237412	899.45436458600	0.27106237412	0.27106237412	0.00000000000
A494	0.16756203026	1798.90872917000	0.16676996648	0.16835409403	0.00079206377
A503	0.17793236673	1798.90872917000	0.17715232074	0.17871241272	0.00078004599
A509	0.36045941711	899 45436458600	0 36045941711	0 36045941711	0 00000000000
A510	0.329/100612/	1708 00872017000	0.323/6108556	0 33535003602	0.0059/897568
A510	0.02341000124	800 45426458600	0.06779264492	0.0000000000000000000000000000000000000	0.00094097500
ASZ	0.20770304102	099.45430450000	0.20770304102	0.20770304102	0.0000000000
A520	0.19216413796	899.45436458600	0.19216413796	0.19216413796	0.00000000000
A522	0.19325169921	899.45436458600	0.19325169921	0.19325169921	0.00000000000
A523	0.19342701137	899.45436458600	0.19342701137	0.19342701137	0.00000000000
A531	0.15197736025	1798.90872917000	0.15156042576	0.15239429474	0.00041693449
A535	0.17276670039	899.45436458600	0.17276670039	0.17276670039	0.00000000000
A537	0.18910414726	1798.90872917000	0.18900059164	0.18920770288	0.00010355562
A557	0.07478974015	899 45436458600	0.07478974015	0.07478974015	0.00000000000
A56	0.00780680389	800 15136158600	0.00780680380	0.00780680280	0.0000000000000000000000000000000000000
A50	0.09700000000	000 45400400000	0.03100000000	0.03100000000	0.0000000000000000000000000000000000000
A560	0.09548306465	899.45436458600	0.09548306465	0.09548306465	0.00000000000
A562	0.09725786746	899.45436458600	0.09/25786746	0.09725786746	0.0000000000
A565	0.09744956593	2698.36309376000	0.09696532786	0.09785614163	0.00036779603
A57	0.08123411238	899.45436458600	0.08123411238	0.08123411238	0.00000000000
A572	0.07804027200	1798.90872917000	0.07789658010	0.07818396389	0.00014369190
A574	0.07752956450	899.45436458600	0.07752956450	0.07752956450	0.00000000000
A580	0 26485991478	899 45436458600	0 26485991478	0 26485991478	0.0000000000000000000000000000000000000
A586	0.20-00001-10	800 45436459600	0.2076040604	0.26776740604	0.0000000000000000000000000000000000000
A500	0.20210240094	099.4040040000	0.20210240094	0.20210240094	0.000000000000
A596	0.32834/44453	899.45436458600	0.32834/44453	0.32834/44453	0.00000000000
A598	0.24750499427	1798.90872917000	0.24390447140	0.25110551715	0.00360052288
A612	0.30104950070	899.45436458600	0.30104950070	0.30104950070	0.00000000000
A619	0.27955126762	899.45436458600	0.27955126762	0.27955126762	0.00000000000
A627	0.28207546473	899.45436458600	0.28207546473	0.28207546473	0.00000000000
A631	0.24736043811	899,45436458600	0.24736043811	0.24736043811	0.000000000000
A645	0 21062201262	899 45436458600	0 21062201262	0 21062201262	0.0000000000000000000000000000000000000
A65	0.21002201202	1107 27102202000	0.21002201202	0.21002201202	0.0000000000000000000000000000000000000
A652	0.24001210194	7431.21 102233000 900 45426459600	0.21100001040	0.20000074117	0.02000400240
8033					

Onyibe et al.; Asian J. Adv. Res	. Rep., vol.	18, no. 6, pp.	10-20, 2024; Article no	.AJARR.114874
----------------------------------	--------------	----------------	-------------------------	---------------

A655	0.36181572825	3597.81745835000	0.31560164690	0.38226050139	0.02688247389
A664	0.25211006403	899.45436458600	0.25211006403	0.25211006403	0.00000000000
A669	0.29679521918	1798.90872917000	0.29123073816	0.30235970020	0.00556448102
A670	0.38228467107	899.45436458600	0.38228467107	0.38228467107	0.00000000000
A671	0.41154181957	899.45436458600	0.41154181957	0.41154181957	0.00000000000
A679	0.37470456958	899.45436458600	0.37470456958	0.37470456958	0.00000000000
A695	0.34820756316	899.45436458600	0.34820756316	0.34820756316	0.00000000000
A702	0.36261847615	899.45436458600	0.36261847615	0.36261847615	0.00000000000
A703	0.32408341765	1798.90872917000	0.31985935569	0.32830747962	0.00422406197
A704	0.36756807566	899.45436458600	0.36756807566	0.36756807566	0.00000000000
A708	0.34838747978	899.45436458600	0.34838747978	0.34838747978	0.00000000000
A716	0.34685549140	899.45436458600	0.34685549140	0.34685549140	0.00000000000
A718	0.33183231950	899.45436458600	0.33183231950	0.33183231950	0.00000000000
A723	0.32136923075	2698.36309376000	0.27703997493	0.35762506723	0.03339036139
A736	0.33040288091	899.45436458600	0.33040288091	0.33040288091	0.00000000000
A752	0.26573777199	1798.90872917000	0.26202204824	0.26945349574	0.00371572375
A764	0.29052558541	899.45436458600	0.29052558541	0.29052558541	0.00000000000
A767	0.28521941602	1798.90872917000	0.28446999192	0.28596884012	0.00074942410
A770	0.27407753468	899.45436458600	0.27407753468	0.27407753468	0.00000000000
A771	0.24460914731	899.45436458600	0.24460914731	0.24460914731	0.00000000000
A775	0.35862272978	899.45436458600	0.35862272978	0.35862272978	0.00000000000
A777	0.29609110951	1798.90872917000	0.28746262193	0.30471959710	0.00862848759
A778	0.25558269024	899.45436458600	0.25558269024	0.25558269024	0.00000000000
A783	0.26632350683	899.45436458600	0.26632350683	0.26632350683	0.00000000000
A800	0.30978877842	1798.90872917000	0.30847349763	0.31110405922	0.00131528080
A801	0.33806166053	1798.90872917000	0.30737844110	0.36874487996	0.03068321943
A81	0.35301622748	899.45436458600	0.35301622748	0.35301622748	0.00000000000
A811	0.34373018146	899.45436458600	0.34373018146	0.34373018146	0.00000000000
A812	0.30108106136	899.45436458600	0.30108106136	0.30108106136	0.00000000000
A817	0.32831367850	899.45436458600	0.32831367850	0.32831367850	0.00000000000
A818	0.31697317958	899.45436458600	0.31697317958	0.31697317958	0.00000000000
A830	0.32047200203	899.45436458600	0.32047200203	0.32047200203	0.00000000000
A832	0.27395413816	1798.90872917000	0.27294918895	0.27495908737	0.00100494921
A835	0.26858478785	899.45436458600	0.26858478785	0.26858478785	0.00000000000
A836	0.38538968563	1798.90872917000	0.37859666348	0.39218270779	0.00679302216
A840	0.25238856673	899.45436458600	0.25238856673	0.25238856673	0.00000000000
A841	0.26377640665	1798.90872917000	0.26348757744	0.26406523585	0.00028882921
A843	0.32313954830	899.45436458600	0.32313954830	0.32313954830	0.00000000000
A844	0.29658150673	899.45436458600	0.29658150673	0.29658150673	0.0000000000
A848	0.32608100772	899.45436458600	0.32608100772	0.32608100772	0.0000000000
A859	0.26038619876	899.45436458600	0.26038619876	0.26038619876	0.0000000000
A88	0.22077786923	899.45436458600	0.22077786923	0.22077786923	0.0000000000
A885	0.24045088887	899.45436458600	0.24045088887	0.24045088887	0.00000000000
A888	0.25322371721	899.45436458600	0.25322371721	0.25322371721	0.00000000000
A89	0.26509839296	899.45436458600	0.26509839296	0.26509839296	0.0000000000
A906	0.23592902720	899.45436458600	0.23592902720	0.23592902720	0.0000000000
A914	0.36833238602	899.45436458600	0.36833238602	0.36833238602	0.00000000000
A921	0.39730983973	899.45436458600	0.39730983973	0.39730983973	0.00000000000
A963	0.23095713556	899.45436458600	0.23095713556	0.23095713556	0.00000000000
A966	0.21268017590	899.45436458600	0.21268017590	0.21268017590	0.00000000000
A975	0.18911357224	899.45436458600	0.18911357224	0.18911357224	0.00000000000
A978	0.18554425985	1798.90872917000	0.18084223568	0.19024628401	0.00470202416
A991	0.17525723577	899.45436458600	0.17525723577	0.17525723577	0.00000000000
A675	0.16921453923	1798.90872917000	0.16802397370	0.17040510476	0.00119056553

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/114874