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Abstract

Agent-based models have gained traction in exploring the intricate processes governing the
spread of infectious diseases, particularly due to their proficiency in capturing nonlinear
interaction dynamics. The fidelity of agent-based models in replicating real-world epidemic
scenarios hinges on the accurate portrayal of both population-wide and individual-level inter-
actions. In situations where comprehensive population data are lacking, synthetic popula-
tions serve as a vital input to agent-based models, approximating real-world demographic
structures. While some current population synthesizers consider the structural relationships
among agents from the same household, there remains room for refinement in this domain,
which could potentially introduce biases in subsequent disease transmission simulations. In
response, this study unveils a novel methodology for generating synthetic populations tai-
lored for infectious disease transmission simulations. By integrating insights from microsam-
ple-derived household structures, we employ a heuristic combinatorial optimizer to
recalibrate these structures, subsequently yielding synthetic populations that faithfully repre-
sent agent structural relationships. Implementing this technique, we successfully generated
a spatially-explicit synthetic population encompassing over 17 million agents for Shenzhen,
China. The findings affirm the method’s efficacy in delineating the inherent statistical struc-
tural relationship patterns, aligning well with demographic benchmarks at both city and sub-
zone tiers. Moreover, when assessed against a stochastic agent-based Susceptible-
Exposed-Infectious-Recovered model, our results pinpointed that variations in population
synthesizers can notably alter epidemic projections, influencing both the peak incidence
rate and its onset.

Author summary

Exploring the intricacies of infectious disease transmission becomes profoundly insightful
with tools that can model complex, nonlinear interactions. Among these, agent-based
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models stand out, primarily due to their ability to mirror not just expansive populations
but also detailed individual-level interactions. While synthetic populations act as a vital
surrogate for the real-world demographic when comprehensive datasets are elusive, their
creation isn’t without challenges. Present synthesizers, though acknowledging intra-
household relationships, still have nuances left unexplored. Addressing this, our research
presents a pioneering method tailored for crafting synthetic populations, especially for
disease spread simulations. This methodology, grounded in data from genuine household
structures, utilizes an optimization strategy to calibrate these relationships effectively.
Applying this, we meticulously constructed a synthetic population for Shenzhen, China,
encompassing over 17 million agents. Our results underscored the technique’s prowess in
accurately emulating population structures, adhering commendably to demographic met-
rics on both city and subzone scales. Crucially, our findings also illuminated that the spe-
cific choice of synthesizer can have a profound bearing on epidemic simulations, affecting
crucial attributes like the peak and timing of disease incidence.

1. Introduction

Agent-based microsimulation models are gaining in significance in the domain of epidemic
modeling [1-4]. Compared to traditional aggregated simulation models (i.e., meta-population
models), agent-based models simulate the attributes and behaviors of each individual over
time, offering comprehensive and precise insights into the transmission of epidemics [5].

Nearly all agent-based models employ a synthetic population of households and individuals
with relevant attributes. Census data from a city is an optimal data source for this purpose, as
it contains fully disaggregated information pertaining to the entire population. However, col-
lecting such data could be subject to specific restrictions, such as confidentiality and, impor-
tantly, costs [6]. Therefore, creating synthetic population data is deemed a cost-effective
solution to furnish agent-based simulation models with synthetic populations that are reason-
ably accurate.

The objective of the population synthesis algorithm is to utilize a small sample of the popu-
lation, such as data obtained from a household travel survey, to establish a model from which
the complete population can be generated based on certain assumptions. Significant research
has already been performed in the fields of transportation simulation and urban planning, and
there are many well-developed tools for population synthesis modeling, which can provide a
list of agents with various sociodemographic attributes (age, gender, occupation, income, or
whether the agent has a car/driving license, etc.) for urban planning/ transportation microsi-
mulations [7-10].

Unlike the models described above, the agent-based model for epidemic simulation focuses
on the different agent attributes of interest. For example, agent probabilities of morbidity,
severe illness, and death after infection are usually age-dependent when modeling respiratory
diseases. Thus, age-related attributes are extremely important for expressing agent heterogene-
ity in these models. Although some studies [11] indicate that income also affects the dynamics
of disease transmission, in this study, our focus in the modeling is placed on the age structure
factors within the synthetic population. Consequently, attributes such as income have not
been included as individual attributes in our model.

Several studies have revealed that the household structure has a profound impact on the
transmission of infectious diseases [12-14]. Although previous research has attempted to asso-
ciate both household- and individual-level attributes in a unified manner, they most simply fit

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011810 February 12, 2024

2/26


https://doi.org/10.1371/journal.pcbi.1011810
https://www.kaggle.com/datasets/keminzhu/basemap-shenzhen-subzones
https://www.kaggle.com/datasets/keminzhu/basemap-shenzhen-subzones
https://www.kaggle.com/datasets/keminzhu/basemap-shenzhen-subzones
https://github.com/ZhuKemin/EpiPopSynth

PLOS COMPUTATIONAL BIOLOGY Synthetic population for epidemic dynamics

the marginal distribution of household-level attributes (e.g., household size), and thus fail
to capture and reproduce the interdependencies among agents within the same household
[15]. Unfortunately, this may mean that some significant patterns are overlooked. For
example, a household comprises three generations: children, parents, and grandparents.
Children are more likely to be infected with pathogens, particularly those causing fecal-
orally transmitted [16] and respiratory diseases [17], due to their social activities and fre-
quent contact with children in the same age group and can transmit these infections to their
grandparents [18]. This particular transmission pattern can lead to outbreaks in the elderly
population during an epidemic. However, models cannot capture and reproduce this phe-
nomenon unless the interdependencies among household members are preserved in the
synthetic population. This introduces potential bias into the epidemic simulation process.
and affects the output of the model, which in turn misleads decision makers. Therefore,
population synthesis for epidemic simulation sets higher requirements for the representa-
tiveness of the household structure.

Another important distinction between the general population synthetic model and the
design of an epidemic simulation is the explicit representation of the locations of individuals.
While spatial models of disease transmission are important in understanding the spread of epi-
demics, it is worth noting that in most studies, spatial population data is primarily utilized for
mapping epidemics rather than projecting the risk of infection at an individual level [19]. Tra-
ditionally, spatial representation of synthesized agents in daily activity chains either attach to
individuals based on sociodemographic attributes or are constructed by applying activity-
based models [20-22]. In this study, we focus on the demographic attributes of individuals
and households, rather than their mobility behavior. This focus has guided our method of rep-
resenting individuals’ geographic locations at the zonal level of their residential addresses. By
this approach, we effectively generate a synthetic population dataset with spatial regional
labels, suitable for epidemic simulation analysis, without involving detailed activity logs or
travel trajectories of each individual for downstream tasks.

The present study was performed with the aim of providing a population synthesis frame-
work that can capture and reproduce the structure and spatial distribution of populations at
both the household and individual levels. To more comprehensively capture the interdepen-
dencies between individual and household characteristics, the proposed framework integrates
two stages: (1) typical household structure selection, which is applied to capture the most com-
mon household types and their frequency from a small fraction of disaggregated surveys; and
(2)combinatorial optimization, which generates a whole synthetic population composed of
combinations of household structures that consist of the marginal distributions for attributes
of full census data. These two steps ensure that our synthetic population preserves the underly-
ing interdependence among individuals within the same household based on their structural
relationships. Further, an agent-based Susceptible-Exposed-Infectious-Recovered (SEIR)
model was constructed to allow qualitative assessment of the impact of different population
synthesis methods on epidemic modeling.

2. Literature review

In this section, we first reviewed the current state of population synthesis methods. Then, we
delved into the use of synthetic populations in infectious disease models. Finally, we examined
the limitations of previous studies and proposed some of the contributions this paper can
make to the literature.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011810 February 12, 2024 3/26


https://doi.org/10.1371/journal.pcbi.1011810

PLOS COMPUTATIONAL BIOLOGY Synthetic population for epidemic dynamics

2.1 Population synthesis methods

Population synthesis modeling has a rich and extensive literature, with the Iterative Propor-
tional Fitting (IPF) algorithm standing out as the most widely adopted approach. Originally
developed as a method for adjusting contingency tables [23], it is a log-linear model that pre-
serves only the main effects, and has been applied in various fields such as urban studies and
transportation research. Despite its popularity, there are limitations to the IPF model that
researchers are continuously working to address. For instance, the "zero-cell problem" occurs
when there are attributes with limited or no observations, which can be addressed using sparse
matrix manipulation techniques as proposed by [24]. Additionally, the IPF method can
become computationally burdensome when dealing with a large number of attributes, particu-
larly those with multiple categories, which can limit scalability [25,26].

In terms of population synthesis for microscope epidemic simulation, the most notable lim-
itation of the IPF is that it matches distributions only at a single demographic level; thus, it is
unable to associate household- and individual-level attributes in a unified manner [27]. The
Iterative Proportional Updating algorithm proposed by [28] aimed to match household and
person attributes as closely as possible in a universal generator. This algorithm allows for
simultaneous control of both levels to better control the fitting at both the household and indi-
vidual levels. In addition, hierarchical and multistage IPF procedures have been proposed to
preserve these relationships [29,30]. PopGen, an open-source synthetic population generator
[31], was implemented using this algorithm.

Population synthesis can be classified into two main approaches based on whether the goal
is to create the attributes of entities or to replicate known real entities. These two approaches
are commonly referred to as Synthetic Reconstruction (SR) and Combinatorial Optimization
(CO), respectively [31]. CO is frequently used for population synthesis and it attempts to gen-
erate an optimized solution by randomly selecting samples from the microdata while minimiz-
ing the differences in marginals using algorithms such as Simulated Annealing [32,33]. CO-
based methods is characterized by the replication of existing agents in microsamples [34].
Other variations of CO, such as fitness-based methods [35], follow the process of microsample
replication. However, as previously mentioned, an over-reliance on replication can result in
several conceptual and empirical challenges.

In contrast, SR is a population synthesis approach that leverages both detailed and summa-
rized data to reconstruct individual entities, relying on the estimation of the most accurate
underlying attribute distribution. Initially, this technique relies on granular data, often a sam-
ple, which is assumed to be a representative subset of the overall population, commonly
referred to as seed data. Subsequently, the synthetic population is created by allocating individ-
uals with specific socio-demographic characteristics to designated areas. This allocation
employs a weighting mechanism to align the marginal distribution with aggregated data, typi-
cally derived from comprehensive sources like census data. One established approach for
achieving this alignment is through deterministic re-weighting algorithms [36,37]. These algo-
rithms assign weights to individual records within the granular data, treating them as probabil-
ity distributions derived from the available aggregated data. The process treats each attribute
of the population units independently, performing sampling from marginal distributions to
select units matching the area-specific population totals.

The literature review in this study primarily focuses on conventional population synthesis
methods. However, it is important to acknowledge that more advanced methods have emerged
in recent years, which warrant attention. For instance, probabilistic graph models, including
Hidden Markov Models (HMM:s) and Bayesian Networks, have been explored for population
synthesis tasks [34,38,39]. These models offer a probabilistic framework for populations
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synthesis, allowing for the incorporation of uncertainty and capturing complex dependencies
among attributes. Moreover, deep generative models, such as Generative Adversarial Networks
(GANs) and Graph Autoencoders (GAEs), have gained significant traction in various data syn-
thesis applications, including population synthesis [40]. These models have the capacity to gen-
erate diverse and realistic synthetic populations, potentially offering advantages over traditional
methods. Additionally, the concept of ‘spatially explicit’ population synthesis has received atten-
tion, enabling the creation of synthetic populations that capture geographic distribution pat-
terns [41]. However, these deep learning models often require extensive hyperparameter tuning
and training, adding complexity and reducing practicality in implementation. Thus, we chose
CO methods due to their typically lightweight algorithmic structures, making them easier to
implement and highly efficient when handling large population data. This lightweight structure
and ease of implementation give our approach practical relevance in the field of infectious dis-
ease modeling and facilitate its adoption and application by other modeller.

It is worth noting that while previous methods have been instrumental, the challenge of
accurately reproducing structural relationships among household members persists. These
structural relationships are closely linked to individual interactions within households and can
significantly impact the modeling of infectious diseases. Introducing this type of household
structural information into population synthesis models has the potential to enhance our abil-
ity to capture these intricate network structures.

2.2 Epidemic simulation with synthetic population

Epidemic simulation comprises a related and often overlapping stream of research that
requires a highly realistic synthetic population. To simulate the spread of infections in popula-
tions with different geographic and demographic characteristics, the modeler typically uses
census data, either from the population they are planning to recreate or from a similar popula-
tion [3,42]. Synthetic populations have been widely recognized as a valuable tool for epidemic
modeling in numerous studies [26,43-46]. This is particularly important when population het-
erogeneities play a critical role in disease transmission [47], or when disease incidence or infec-
tion risk varies significantly across subgroups, such as age groups [48-50]. Recent findings
regarding the highly variable prevalence of COVID-19 across age groups [51,52] have further
underscored the pivotal role of demographics in shaping transmission dynamics.

Compared with research on urban planning or transportation models, population synthesis
for epidemic modeling focuses on different scientific issues and attributes of interest. However,
to the best of our knowledge, there are only a few population synthesis methods dedicated to
the design of agent-based epidemic modeling, including the population synthesis module
within epidemic modeling toolkits [53]. Some existing epidemic agent-based models use real-
world data from surveys to model population and inter-agent contacts within small regions,
such as blocks [1] or campuses [54]. However, this approach involves privacy concerns and
also limits the scope of application of the model to a small study area. When it comes to model-
ing the development of epidemics at the city level or even larger research scales, this kind of
method is not applicable in terms of either cost or data accessibility.

When modeling epidemic transmission among large populations lacking real-world data,
various techniques have been applied to existing agent-based models to cope with the popula-
tion synthesis problem. Given its simplicity, IPF has become the primary choice in population
synthesis for various types of realistic modeling problems [55,56], including epidemic model-
ing [57,58]. Neglecting household structure information may introduce potential bias into the
constructed synthetic population and consequently influence the simulation of the disease
transmission process.
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As an alternative approach to generating synthetic populations for microscale epidemic sim-
ulations, some agent-based models make use of open-source modules or software originally
designed for and extensively applied in transportation, ecology, and urban planning research.
Examples of such tools include TransSim and MATSim [59,60], as well as other tools like SPEW
(implemented in R language) [61] and Gen* (implemented in Java language) [62], which are
also utilized for this purpose. These open-source platforms provide practical tools for creating a
representative synthetic population for urban transportation planning and can be readily
adopted for epidemic modeling. Most of these platforms have the capability to link household-
level and individual-level attributes in a cohesive manner. Some activity-based travel demand
models such as ActivitySim can simulate the travel choices/trips of individuals based on classic
transportation simulators such as the four-step travel model. Although they have been widely
applied in the field of microscopic epidemic modeling, general-purpose population synthesizers
are complicated and computationally intensive. The task of characterizing joint associations
among a large set of attributes becomes challenging due to the curse of dimensionality, particu-
larly when these attributes are organized hierarchically at both the household and individual
levels [15]. Fitting socioeconomic attributes including income, building type, and number of
vehicles at both household and individual levels may impose a heavy and unnecessary computa-
tional burden, as these attributes are not of interest in most epidemic research. Owing to
computational insensitivity, most agent-based simulators for epidemic modeling tend to gener-
ate a sampled synthetic population instead of a population with the actual size of the study area,
potentially weakening the representation of the synthetic population.

In conclusion, current population synthesizers focus on fitting multidimensional socioeco-
nomic attributes and, therefore, fail to effectively capture the relationships among household
members, leading to potential biases in agent-based simulations of infectious disease transmis-
sion based on synthetic agents. As such, there is a strong need to construct an alternative popu-
lation synthesis framework that can accurately reflect the distribution of household structures
in the population and thus characterize the underlying distribution of interdependency.

3. Materials and methods
3.1 Framework

In this section, we present the framework for population synthesis (Fig 1), with a focus on
designing an epidemic simulation using a household motif optimization model. This proce-
dure consists of two phases: motif selection and optimization. In the selection phase, we priori-
tized understanding the "co-inhabitant’ that could lead to disease transmission among
household members. We generated a finite pool of age-specific structures, known as household
motifs, to represent the most common household types. These motifs were generated using a
data-driven approach, analyzing the statistical patterns of encoded household structures from
microsample survey data. Subsequently, in the optimization phase, we employed a heuristic
algorithm to adjust the weights assigned to these household motifs. This process aimed to gen-
erate a synthetic population that matched the marginal attribute distributions in census data at
both the city and subzone levels. Using this synthetic population, which represented as a list of
agents, we established a stochastic agent-based epidemic model to assess how generated syn-
thetic populations impacts disease transmission simulations.

3.2 Preprocessing and encoding of the household structure

One essential input for this problem is the public use of micro samples (PUMS); here, we use
the household and travel survey data of Shenzhen as an alternative because the PUMS is not
available. Table 1 presents an example dataset.
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Table 1. Sample of household survey data.

Microsamples Survey Dataset

‘ Encoding

Houschold Structure

- Statistics

Distribution of
houschold structures

Top & frequent
houschold structures

e

City-Level Marginal:
® Age structure

® Household Size

® Gender Ratio

Demographic Dataset

Subzone-Level Marginal:
® Age structure

Total of 673 subzones, with
the number of agents in the
subzones ranging from less
than 200 to over 120k.

Bi-layered Heuristic Optimization

City-Level Optimization

Attributes Vector: [ Gender + Age Houschold Size | Decision Vector Objective City-Level Marginal:
1 L
r A [ - L)
Hoffemale | #ofmale | #ofy0-10 # of agent Weight Subzone-Level ® Age Structure
Marginal: :
> " A - n g 2 Re-weighting| ® Gender Ratio
2 3 . )
x W | noescane | |+ ¢ }ousehold Size Distribution

Y, 1 1 0 . 1 X2

¢ ® Motif Distribution
Subzone-Level Optimization Rowiighig

I Subzone-Level Optimization —

| Spatially-explicit synthetic population

Fig 1. The framework of population synthesis. The basemap shapefile can be accessed at https://www.kaggle.com/

datasets/keminzhu/basemap-shenzhen-subzones.

https://doi.org/10.1371/journal.pcbi.1011810.9001

Table 1 shows the raw survey data sample, in which we treated both household- and indi-
vidual-level attributes as nominal categorical variables during the preprocessing stage. Each
agent was divided into several age groups. To ensure simplicity, we arbitrarily classify a

HID Np Dwell BuildingID Car PID Age Gender Occupation PhoneOwner
1 2 FH 0400****1700000 Yes 1 42 Male 22 Yes
2 FH 0400****1700000 Yes 2 36 Female 5 Yes
2 1 CD 0700****4200000 No 3 33 Male 14 Yes
3 1 CD 0701****2300000 No 4 29 Male 21 Yes
i x! x? x? x; X X X! X x

HID and PID represent household and person ID, respectively. Np denotes the total number of individuals in the household. Dwell is a dwelling type (FH-family

household/CD-collective dwell). In the following steps, only HID, PID, age, and sex were reserved.

https://doi.org/10.1371/journal.pchi.1011810.t001
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person’s age into ten-year groups to illustrate this subprocess. In practice, researchers can reset
the age groups to satisfy the requirements of their simulation model. Socioeconomic attributes
such as family income or whether an individual has a driving license were omitted from this
study because those attributes are generally not considered critical variables in epidemic simu-
lation. This helps to avoid unnecessary computation of irrelevant attributes and prevents the
curse of dimensionality that transportation-oriented population synthesis models often suffer
from.

Herein, p* denotes the kth member within the ith household H,; in the survey data, where
i=1,..,mandk=1,...,n. We categorized each individual in the list into different types
according to sex and age. For example, p* € {F, 2} for a female ages between 20-29(F/M
stands for female/male). The household structure was subsequently encoded by counting the
total number of each type of individual p¥ within the household. For example, given a family
that consists of a 20-29 age couple (in the second age group) and two daughters under 10 (in
the first age group) in the survey data, in the process of encoding, this family is marked as a
unique household structure coded as”(M,2)+(F,2)+(F,1)+(F,1)".

3.3 Household motif selection

There are 18 distinct individual-type p* under the current age group settings, which could
result in over 47 millions possible household structures and 4729 in the dataset, even when we
assume that the household size is no larger than six. This number increases exponentially if a
finer age group is adopted, making subsequent optimization impossible within reasonable
computational times. However, the majority of these household structures are rarely observed
in real-world populations. For example, the household structure coded as”(F,8)+(F,8)+(F,8)
+(F,8)+(F,8)+(F,8)” (a family consisting of six elderly females) would be infrequent in most cit-
ies and, therefore, can be ignored without losing substantial representativeness of the
population.

Based on this intuition, we selected the top S most frequent household structures in the sur-
vey data as the approximate representation of the entire population. We call these household
structures motifs in analogy to motifs in complex networks [63] and human mobility modeling
[64], which refers to a distinctive, usually recurrent structural element.

Specifically, we first traverse the survey data and record the household structures. These
household structures were then reranked based on how often they appeared. Given a represen-
tative threshold ¢, one can obtain a minimum S to ensure that

> P(HS) > o,i=1,...,8,

where HS; is the ith household structure after re-ranking, P(HS) is the frequency of HS in the
survey data. These HS; motifs were selected for subsequent optimization. During the traversal
process, P(HS) was recorded as the initial value of the following optimization procedure
(Table 2).

Another major limitation of this motif-selection method is that it captures only the existing
household structure in the household survey data, which means that If a particular combina-
tion of attributes for a household, such as a specific composition of agents, is not observed in
the survey data, it may not be generated in the synthetic population because the corresponding
cell in the initial distribution is zero [15]. This zero-cell problems may arise during the integra-
tion of population census demographics with household survey data. These issues are primar-
ily associated with conventional IPF/CO methods and can occur when the nominal categories
are overly fine-grained, and the sample survey data lack sufficient coverage for all possible
attribute combinations. To address this problem, we replace incorrect zero-cell values with
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Table 2. An example of a household motif weight matrix.

Motif
(M,3)+(F,2)
(M,2)+(F,2)
(M,3)+(F,3)
(M,2)+(F,3)
(M,4)+(F,3)

(M,3)

(M,0)+ (M,3)+(F,3)

N,

2
2
2
2
2
1
3

Ny N Nao Nax Na> N3 e Kinit
1 1 0 0 1 2 . 0.071
1 1 0 0 2 0 0.063
1 1 0 0 0 3 0.060
1 1 0 0 1 2 0.048
1 1 0 0 0 2 0.045
0 1 0 0 0 1 0.034
1 2 1 0 0 2 0.008

N, represents the number of individuals in a household, Nyand N, represent the number of male and female individuals respectively, N represents the number of

individuals in the k-th age group, X;,,;; represents the frequency of the household structure P(HS) in the survey data and serves as the initial value for optimization.

https://doi.org/10.1371/journal.pcbi.1011810.t002

small positive values (e.g., 10~°). This approach has been commonly used in previous combina-
torial optimization-based approaches [8].

3.4 Household motif combinatorial optimization

In order to generate the synthetic population for the epidemic simulation, we adjust and real-
locate the weights among the household motifs selected in Section 3.3. The most commonly
used method for this process is the Iterative Proportional Fitting (IPF) procedure, which
involves estimating joint distributions that match the given marginal frequency distributions.
However, this approach can lead to an inconsistency between weights for matching house-
hold- and individual-level distributions, even with more sophisticated algorithms [28]. Addi-
tionally, accurately characterizing household structures is a difficult task. Therefore, we
propose an approach called the Motif Heuristic Optimization (MHO) to generate synthetic
populations by incorporating the distribution of household motifs.

The algorithm begins by creating an attribute matrix D that contains all motifs and data
describing the composition of the household (as shown in Table 2 above), where N, is the
household size of this motif, N5 N,,, N, stand for the number of agents of different genders
and age groups in this type of household. X denotes the weights of household motifs that are
initialized by the frequency of observations in survey data X, and the target vector Y =
{Yy, Y, Y, Yo, Yo, - .., Y} denotes the values of the total size of the whole population and
the number of agents of different genders and age groups in the census data that the motifs are
to be re-weighted to match. This problem can be recast as an optimization problem, where the
weights of household motifs X are decision variables or vectors. An objective function can be
formulated to minimize the discrepancy between simulation Y = D-X and observation Y using
mean square error. The mathematical formula is as follows:

Minimize : E(X) = o(Y,Y) 4+ 1(X,X)
where p(Y,Y) = ZLI 0, = 7)/n

(X, X) = Zil (logx, — logx,)* /m

Subject to : 0<X<ub
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where the 7(X, X) is the penalty term used to ensure that the optimized weights X are consis-
tent with the weights of the household motifs observed in the survey data. We normalized this
term using a logarithmic function to account for the significant power-law characteristics in
the distribution of household motifs observed in the survey. ub is the upper bound vector of X
which determines the search field of the optimization; in this case, ub is set as a full vector. An
additional non-negative lower bound constraint is imposed on each to prevent negative
weights, as negative persons or households obviously cannot exist.

After formulating the objective function and bound constraints, the objective of the optimi-
zation stage is to find the household structure that provides the best fit. Ideally, a straightfor-
ward method would involve enumerating all possible combinations of motifs and evaluating
their scores. However, in practice, this is not feasible because the number of candidates
increases exponentially with the number of selected motifs [65]. Therefore, to address this
bound-constrained nonlinear minimization problem with acceptable computational effi-
ciency, a trust region-reflective optimizer [66] was introduced to reweigh the motifs. As illus-
trated in Algorithm 1, This process can be viewed as an iterative search procedure, where the
algorithm moves from one solution to a neighboring one until a stopping criterion is satisfied
(Algorithm 1).

Algorithm 1. Motif heuristic optimization procedure

ALGORITHM Heuristic Optimization for Motif Re-weighting

INPUT: Attribute matrix D of motif pool; Motif distribution Xjnie; Max-—
imum number of iterations to perform Kpax, Absolute error ftol in
between iterations that is acceptable for convergence; Known marginal
vector Y

OUTPUT: Optimized motif weights vector X

1: initialize X« X,k —0
2: while k<k,.., do
3 X+—NEIGHBOR (X)

4 Aloss = loss(X)-loss(Xy), where loss(X)=3VD-X-Y +6(X-X,,)
5: if Af<0, then

6: update XX

7: end if

8 if |Aloss|<ftol, then

9 break loop

10: end if

11: end while

Synthetic households can be generated and formed into a list of synthetic agents Based on
the household motifs selected from the microsample survey data and their weights X obtained
by heuristic optimization by repeating household motifs X times. However, it is worth noting
that X obtained from the optimization process is a decimal number, which will be rounded off
when generating the household list. This may introduce numerical bias and cause some infre-
quent household structures with low weights to be overlooked in the generated synthesis popu-
lation. To address this problem, we generated synthetic populations by sampling with weights
X as choice probabilities, instead of repeating household motifs. The necessity of this operation
depends on the requirements of the various households in the downstream agent-based
model.

Results

This section demonstrates the performance of the population synthesis method proposed in
the present study. In this example, a synthetic population of 17.37 million people among 673
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communities was generated for Shenzhen, China, using a subsampled household survey and
demographic data, and the effects of fitting the marginal distribution of the synthetic popula-
tion and the joint distribution of gender-age combination at both city and subzone levels were
tested. We subsequently compared the proposed model with two widely used population syn-
thetic methods (Direct Inflating and Iterative Proportional Fitting) in terms of their ability to
capture cross-age interdependency. The implications of this discrepancy in different synthetic
populations for the simulation of infectious disease transmission are further discussed by con-
ducting a simple Susceptible-Infectious-Removed microsimulation.

3.5 Data sources

(a) Household interviews. In 2016, the Shenzhen Land Transport Authority conducted a
transportation survey that serves as a crucial data source for urban and transportation model-
ing/planning in China. Transportation surveys are typically used by urban/transportation
planning agencies and research institutes to collect comprehensive demographic and socioeco-
nomic information at both household and individual levels, along with a record of the trips/
activities of each individual on a specific weekday. The entire survey dataset used here discov-
ered 111,604 individuals from 46,001 households (approximately 1% of the total population).

Raw survey data were modified to fit the requirements of the model before application. For
simplicity, the attributes of interest, including individual/household identifier, age, and gen-
der, were reserved, whereas socioeconomic columns such as income, driving license, pass type,
and social security status were discarded. Table 2 summarizes the household- and individual-
level attributes from the modified survey. Additionally, the raw data contained collective
dwellings such as staff quarters and school dormitory rooms. These non-family households
were filtered based on their labels. The modified dataset comprised 29,698 households and
65,577 individuals. The average household size in the survey was 2.2, with the largest being 10.
Regarding the age attribute, the census data were presented in numerical form; however,
owing to missing data and the possibility of zero marginal occurrence, age was collated into
nine groups, and the survey data were grouped accordingly.

It’s important to note that our data did not provide clear statistics on this type of co-habita-
tion. Many groups within the data actually consisted of over a dozen individuals in non-tradi-
tional living arrangements, such as roommates flat-sharing or company dormitories, rather
than strictly falling under the category of traditional family households. Introducing such data
into our analysis could potentially introduce bias in subsequent epidemic simulations.

(b) Demographic data. The Demographic dataset was obtained from the seventh popula-
tion census conducted in China since 2020, provided by the Shenzhen Municipal Bureau of
Statistics. The dataset has a spatial resolution at the community level and contains the total
population of each age group in all communities in Shenzhen, saved in tabular form with col-
umn names such as community name, population aged 0-10, population aged 11-20, popula-
tion aged 21-30, etc.

The raw data contains 846 units by administrative division, which were then re-divided
into 673 subzones ranging in size from 0.2-30 km? by geographical boundaries. Data from
uninhabited mountainous areas were discarded. The smallest and largest communities were
Nanao and TongSheng, with fewer than 300 residents and over 120,000 residents, respectively.

3.6 Motifs selection and optimization

3.6.1 Household structure analysis. The purpose of model selection was to obtain the
most representative S household structures and their distributions from the microsample data.
We, therefore, conducted statistical analyses on the distribution of coded household structures
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Fig 2. Distribution of household structure in survey data. (a) Probability/Cumulative Density Function. (b)
Frequency-rank and Liner Regression.

https://doi.org/10.1371/journal.pcbi.1011810.9002

in the travel survey. Fig 2 illustrates the probability density and cumulative distribution func-
tions of the 1000 most frequent household structures in the dataset.

The probability/cumulative density function curves illustrated in Fig 2(A) show that the
top-ranked household structures are orders of magnitude different from other structures. For
example, the most frequent household “(M,3)+(F,2)” accounted for 7% of all households in the
survey, and only 124 structures were needed to cover over 90% of the households in the survey
data, while 216 and 828 are needed to increase the coverage to 95% and 99%, respectively. A
detailed list of the household structures and distributions is provided in the S1 Table.

To provide a more quantitative analysis, we projected the household distribution onto a
double-log scale and applied linear fitting. As shown in Fig 2(B), the frequency of household
structures in the survey exhibited a significantly truncated power-law distribution with
>0.99. To further test the generalizability of this finding, we collected household-explicated
survey data from provinces in China and other countries. The statistical and fitting results
showed similar power-law distributions with different exponent metrics (S2 Text), indicating
that this pattern is generalizable across geographic regions and populations.

3.6.2 Optimization of motif weights. In this phase, the selected motifs were reweighted
to satisfy the household- and person-level margin distributions, following the heuristic optimi-
zation procedure described in Section 3.5. The model starts iterating with the frequency of the
distribution of different household motifs in the microsample data as an initial guess, and then
continuously readjusts the weights of the motifs to achieve the optimizer objective. The objec-
tive function consisted of the residuals of the generated population at the margins of age, gen-
der, and household size. The lower and upper bounds of the independent variables were set to
zero and infinity, respectively, as the motif weight should not be negative. A linear loss func-
tion was applied to reduce the influence of outliers on the solution. The TRF algorithm was
selected as the optimizer to perform minimization because it is particularly suitable for large
sparse problems with bounds. The Python package Scipy. optimize was used to implement this
process.

Fig 3 shows how the objective function and components of the residuals for age, gender,
and household size vary with an increasing number of iterations. During the initial stages of
optimization, the objective function value was mainly contributed by the residuals of the distri-
bution of age groups. Under the above experimental setup, the Python implementation takes
approximately 0.2s per iteration and over 8000 iterations to finally converge (the relative error

ftol in the objective function acceptable for convergence is set to 1le-6). The objective function
approached zero, indicating a highly accurate solution in matching the joint distributions of
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Fig 3. Changes in the objective function value with the iteration number.
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both household- and individual-level attributes. We parallelly generated subpopulations of
multiple spatial units on a high-performance computing environment with 800 computing
nodes, which took approximately 30 minutes to complete the optimization.

3.7 Model validation

3.7.1 Marginal distribution at subzone-level. We performed the optimization for multi-
ple subzones in Shenzhen, thereby generating a synthetic population with geographic spatial
area identifiers. The same motif pool extracted from the household survey was used for each
optimization process, whereas the marginal distribution of age varied among the subzones. As
the demographic data used do not include gender and household size distributions at the sub-
zone level, we use the marginal at the city level to represent the distribution of each subzone.
Neglecting the spatial heterogeneity of these attributes can be resolved if the relevant data are
available. Therefore, the population synthesizer is expected to generate multiple subpopula-
tions such that each subpopulation can satisfy the age distribution of the subzones, while the
entire population can satisfy the distribution of household size, gender, and other high-dimen-
sional attributes at the scale of the whole city.

To assess the accuracy of the generated synthetic population, we compared the number of
people of each synthetic subpopulation with the true ground value of the marginal distribution
in the demographic data. Fig 4 shows the synthsis results and spatial distribution of different
age groups and the full population in the real data, compared on the same scale. It can be seen
that for each group of original and synthetic populations, their spatial hot spot is highly consis-
tent, indicating that the proposed model can accurately reflect the spatial distribution charac-
teristics of the population.

The quantified analysis results of this comparison are presented in Fig 5, where each point
represents the number of individuals living in a certain community within a particular age
group, with different age groups distinguished by color. The generated synthetic population is
highly consistent with the true values in terms of age distribution, with an r-squared reaching
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over 0.99, with some of the relatively larger deviations concentrated in the lower left side. Most
of them are people over 70 years old, which is mainly due to the highly youthful demographic
structure of the study city, with a small number of elderly people in some communities, lead-
ing to large relative errors. Overall, the generated synthetic population accurately reflected the
spatial distribution of the population in the study area, and the proposed model further exhib-
ited high robustness at the subgroup level.

3.7.2 Marginal/joint distribution at the city level. In this section, we further examine the
consistency between the generated synthetic population and real data in the marginal and
joint distributions of the attributes. The main attributes examined include household size, age
distribution, and gender distribution. As marginal data for gender and household structure
are only available at the city level, this part of the test was performed at the level of the whole
city population. The results of the comparison are presented separately in Fig 6, for which the
marginal distributions of the overall synthetic population were obtained by summing over the
subpopulations. The model fits the 1-D marginal distributions well, with errors in the distribu-
tions for each attribute within 0.01%, with the largest error observed for the proportion of
households with a size of 2, which is 2.23*107".

To further quantify the model consistency, we compared the 2-dimensional (age and sex)
frequencies from the generated synthetic population to those computed from the survey data.
Due to the absence of subzone-level joint distribution data at the subzone level, this
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comparison was performed at the level of the entire population. Fig 7 illustrates the compari-
son results between the survey data and the synthetic population. It focuses on the joint distri-
bution of age-gender groups. The color-coding within each cell signifies the proportion of the
population within a specific group. Notably, the largest absolute deviation in the distribution
occurs in the (40-50y, female) group. However, this discrepancy is accentuated by the lower
representation of the older age group in the overall population, resulting in a relatively higher
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Fig 6. Comparison of marginal distributions obtained from the demographic data and synthetic population for
household size, age, and gender.
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relative error. The greatest relative error is observed in the 80y+ female group, accounting for
approximately 7.6%.

3.7.3 Distribution of household motifs. As mentioned previously, one of the technical
difficulties in existing population synthesis methods is capturing and reproducing the interde-
pendency between agents within the same household. Particularly for individual-level epi-
demic modeling, the age structure of family members may influence the subsequent
transmission simulation process. Herein, we compared the different methods by examining
the differences between the distributions of household motifs in the simulated results and sur-
vey data.

Fig 8 shows the ability of the population synthesizer to capture the distribution of house-
hold structures. The rank of the motifs was obtained from the distribution of household struc-
tures in the survey data. In the absence of observations of the entire population, we assumed
that the survey data are sufficiently representative and used the distribution of household
structures as the ground truth for testing the model, which is represented by the dashed line.
The boxplot represents the frequency of motifs obtained from the synthetic population in
repeated experiments for the proposed MHO method and the two benchmark methods.
Among the three population synthesizers, MHO and DI showed a superior ability to preserve
the distributional properties of motifs, whereas the frequencies of the first 11 motifs simulated
by IPF were exclusively lower than the observation. This systematic underestimation was
caused by the failure to reproduce the dominance of minority household structures in the pop-
ulation. The mean values of the motif distributions obtained from the DI method simulations
in multiple experiments were consistent with observations. This is due to the direct replication
of existing households without adjusting the weights, which eventually approaches the distri-
bution of observations after multiple experiments. However, the variances in the simulated
distribution of the DI were significantly higher than those of the MHO because the perfor-
mance of the DI was highly dependent on the quality of the survey data. Bias may be
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Fig 8. Comparison of the motif distribution in the synthetic populations generated by different methods, with motifs
ordered according to the survey data.
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introduced when survey data are not sufficiently representative or have a small sample size. In
contrast, the MHO method can better preserve the distribution properties of household struc-
tures and has the potential to capture within-household interdependency.
3.7.4 Within-household interdependency. This section assesses the ability of the pro-

posed model to capture the cross-age interdependence of household members, which we

describe by constructing a contact matrix. For agents within the same household in the syn-
thetic population, a pair of ages is recorded in the corresponding row and column of the

matrix. For example, a household coded as "(M,3)+(F,3)+(F,0)" contains two adults in their

thirties and a child under ten. In this case, associations between 30-40y and 0-10y were

counted twice, while 30-40y and 30-40y were counted once.
Fig 9 illustrates the household contact matrix for the synthetic population. To ensure the
stability of the results, the matrix of the populations generated using the same method in
repeated experiments was averaged. The three synthesizers captured and reproduced the struc-
tural features of the original contact matrix to some extent. Among the synthesizers, MHO
achieved the best simulation effect, with a sum of mean absolute error of 0.40 less than those of
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Fig 9. Comparison of interdependency distributions in simulated populations using different methods with those
in the survey data, where the value of each cell represents the average frequency of the corresponding cross-age

relationship in households.
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DI (0.58) and IPF (0.48). The distribution of errors was not uniform, with IPF errors concen-
trated in adjacent age groups, while DI’s largest deviations were in the 2nd and 4th age groups,
at 0.018.

3.8 Impact on disease transmission

3.8.1 Agent-based epidemic model overview. In this section, a stochastic, discrete-time,
agent-based model was constructed to further evaluate the impact of the population synthesis
approach on the follow-up epidemic transmission process. This model was modified from
[67]). Specifically, in Section 4.3, we consider a transmission model in which the pathogen
spreads on synthetic weighted contact networks inferred from populations generated by the
MHO, DI, and IPF methods outlined in 4.3. As shown in Fig 10, the contact networks con-
sisted of four layers representing the network of interactions among agents in the following
settings: (1) household, (2) workplace, (3) schools, and (4) community. Connections between
the two agents in the household layer were inferred from the household profiles of synthetic
populations. The work and school layers only included agents aged 0-20 and 20-60 years old
respectively, whereas the household and community layers included agents of all ages. For sim-
plicity, employment and enrollment rates are not considered in the model; each agent aged
0-60 years represents a node in the workplace or school layer. The transmission probability
per contact depends on the contact type. These values correspond to relative weightings of
10:2:2:1 (Kerr et al., 2021) [68] (i.e., households, schools, workplaces, and community con-
tacts), chosen for consistency with both time-use surveys (Lader, Short, & Gershuny, 2006)
[69] and studies of infections with known contact types (Zhang et al., 2020) [70].

The natural history of the disease is captured as a simple Susceptible-Exposed-Infectious-
Recovered model. The model assumes that susceptible individuals (S) are exposed to the disease
through contact with infected individuals, and subsequently transition to exposed

\Q - \\\/ N
- Household * Community - School (y0-20)“ - Workplace (y20-60)

Fig 10. Framework of the agent-based epidemic model. (a) The compartmental model used to describe the natural
history of the infectious disease between the states. (b) Schematic illustration of the weighted multilayer contact
network. Details of the epidemic model and the transitions between compartments are provided in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1011810.g010
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compartments (E), where they are infected but not yet infectious. Symptomatic individuals
were assigned an incubation period of 2 days to manifest symptoms (I). After the onset of
symptoms, the infectious agents remain infectious for another 10 days and recover (R), gaining
permanent immunity against further infection.

3.8.2 Simulation of epidemic transmission. In this section, we analyze the transmission
simulation results for the synthetic populations. For each population generated by MHO, DI,
and IPF in Section 4.3, multi-layer contact networks and individual models were constructed
according to the settings described above. Specifically, the model was initialized with 100 ran-
domly selected infected seeds from the ages 0-20y and their compartments were set to Exposed.
The infected agents in the simulation were recorded each day until the maximum number of
simulation days (80 days) was reached.

The simulated epidemic curves are given in Fig 11, where the daily incident rate represents
the number of new cases (Susceptible— Exposed) within a day as a proportion of the number of

Daily Incidence Rate  Cumulative Incidence Rate ~ Daily Incidence Rate ~ Cumulative Incidence Rate
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Fig 11. Epidemic curve simulated with a different synthetic population.
https://doi.org/10.1371/journal.pcbi.1011810.g011
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their age group or the whole population. Herein, we focused on metrics, including the peak
incidence rate, peak date, and attack rate, which are the most critical indicators of concern in
real-world epidemic prevention and control. From the full age-epidemic curve, the results of
transmission processes on three types of synthetic populations did not show significant differ-
ences in the mean values of attack rate and peak incidence rate, while the epidemic curve of
the DI population showed greater uncertainty, with the standard variance of full age-final
attack rate and peak incidence rate in 1000 repeat experiments being 0.99 and 0.10, respec-
tively, which are much higher than those of MHO (0.12 and 0.03) and IPF (0.12 and 0.03).
This is consistent with the prior analysis of the household motif distribution in Fig 8, which
indicated that the DI method is more sensitive to the representation of sampled survey data
used for synthetic population generation; thus, the population is less stable in terms of trans-
mission characteristics.

Among all three types of synthetic populations, the infection peak date of age group y0-20
arrived earlier than the others, as the initial seed was set in a school, making agents in these age
groups more likely to be infected in the early stage. However, for the IPF population, both age-
specific and full-age-peak date arrives slightly later than for the other two types of populations.
In the age groups of y60+, the difference in peak time will be more significant, with the peak
time simulated by the IPF method lagging behind that of the MHO method by two days. We
speculate that this difference is due to the distribution of household motifs in synthetic popula-
tions. Additionally, although the mean value of the peak date of the DI population was the
same as that of the MHO population, the uncertainty was significantly greater according to the
percentile interval width.

In conclusion, simulating disease transmission based on different synthetic populations
with consistent marginal attribute distributions does not result in significant differences in the
attack rate at the end of the simulation, whether it is for a specific age group or the full popula-
tion. However, it does have an impact on the daily incident rate during the epidemic and the
timing of the epidemic peak. We speculate that this is because the final infection size in the
population at equilibrium is mainly influenced by the marginal attribute distribution, and
there is no significant difference between different synthetic population generation methods.
However, the proportion of household structures in different synthetic populations affects the
dynamics of disease transmission dynamic in epidemic simulations. Therefore, accurately
modeling the distribution of household structures is necessary for precise analysis and preven-
tion and control in real-world epidemic modeling.

4. Discussion

In this research, we introduced a heuristic optimization-driven approach to craft synthetic
populations tailored for infectious disease transmission dynamics. By weaving in insights from
typical household structures and their distribution patterns sourced from survey data, we bol-
stered the synthesizer’s capability to articulate the structural relationships within households.
Our emphasis was directed towards formulating populations underpinned by dependable con-
tact dynamics. This study’s pivotal contributions encompass as followed:

First, based on an analysis of household survey data from multiple countries and regions,
we found that household structures in real-world populations exhibit significant power-law
distribution characteristics, such that a limited number of household structure types are suffi-
cient to represent the entire population with adequate representativeness.

Second, we proposed an MHO population synthesis method to enhance the reliability of
simulating household contact relationships by incorporating typical household structure infor-
mation supporting agent-based modeling of infectious diseases. The performance of proposed
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method was evaluated by generating synthesized populations at the subzone-level of over 17
million people in Shenzhen, China. Generated synthetic populations’ marginal attributes, age-
gender combinations, and household structure distributions were compared with demo-
graphic and survey data

Finally, further analysis of the impact of different population synthesis methods on house-
hold contact relationships and the transmission of infectious diseases using an agent-based
SEIR disease transmission model with a multilayer contact network constructed from synthetic
populations showed that, even with the same input data, different population synthesis meth-
ods can cause differences in peak dates and peak incidence rates in epidemic simulations. In
the broader context of this field, previous studies [71-73] have explored the role of household
and demographic structure in disease transmission, providing a foundational understanding
that informs our approach.

While this study primarily focused on age-related factors due to their significant influ-
ence on disease dynamics and the availability of relevant data, our methodology possesses
the adaptability to be extended to other attributes, such as immunity, when corresponding
data becomes accessible. This flexibility opens up exciting avenues for future research,
enabling the generation of synthetic populations structured by diverse factors that impact
disease transmission.

Futher research is required to overcome the limitations, e.g., better handling high-dimen-
sional attributes. The proposed approach relies on a small number of household structures to
represent the population, which means that, when dealing with population synthesis problems
that involve more attributes of interest beyond age and gender, the number of required motifs
increases significantly. Reducing computational burden can be achieved by addressing this
issue. It is also important to note that our model currently does not incorporate factors like
income, which recent studies suggest may affect disease transmission dynamics. This limita-
tion is an area for potential future refinement. Furthermore, testing on a wider range of data-
sets is required to evaluate the computational performance of the method when dealing with
populations that contain a greater variety of household structures.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data
for Figs 2, 3,4, 5, 6,7, 8,9, and 11. The numerical data for Fig 10 is stored in a shapefile,
which can be accessed through this link: https://www.kaggle.com/datasets/keminzhu/
basemap-shenzhen-subzones.

(XLSX)

S1 Text. Information on the process of generating the synthetic population network and
the epidemic model. This passage provides a detailed description of the process involved in
generating the multi-layered contact network G based on synthetic population in the model. It
includes information about the age groups of agents targeted by each layer and the configura-
tion of weight. Fig A. Parameters used in the infectious disease model. Encompasses all
parameter values used in our S-E-I-R model, along with their descriptions.

(DOCX)

$2 Text. The power-law distribution test for household structures in other survey datasets.
Including tests for other regions in China (CFPS dataset) and other countries worldwide
(IPUM dataset). Fig A in S2 Text. Including tests for Shanghai, Guangdong, Liaoning, Henan,
Gansu, and Other Areas in China datasets, sourced from http://www.isss.pku.edu.cn/cfps/
download. Fig B in S2 Text. Including tests for 15 datasets in different countries from
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different year, sourced from https://international.ipums.org/international/.
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S1 Table. List of top 100 household structures in the transportation survey of Shenzhen.
These frequently occurring household structures cover over 88% of the total population in the
survey data. The proportions of these household structures are set as the initial guess of the
dicision vector for the subsequent combinatorial optimization algorithm.

(DOCX)

S2 Table. Numerical results of epidemic simulation based on different population synthe-
sis methods. The Peak Date, Peak Incidence Rate, and Attack Rate of the epidemic curve,
including both the entire population and various age groups, are provided. Standard devia-
tions (SD) and confidence intervals (CI) are also included.
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