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ABSTRACT 
 

The effects of COVID-19 on pregnant individuals are unclear due to a series of physiological 
changes and immune system adaptations that may affect the development of the fetus. There is 
evidence supporting the role of melatonin in human pregnancy, and it appears that melatonin is 
essential for a successful pregnancy. However, in pathological conditions, such as during SARS-
CoV-2 infection, melatonin levels can be significantly inhibited. In addition, melatonin, a powerful 
endogen antioxidant, free radical scavenger, and anti-inflammatory molecule, has been reported to 
exert beneficial effects on viral diseases such as COVID-19. This review focuses on the current 
evidence regarding the physiopathology of COVID-19 in pregnancy conditions, the role of 
melatonin during pregnancy, and the use of melatonin as a promising treatment. Addressing these 
points should help us understand the knowledge currently available about COVID-19 during 
pregnancy and explore the possible beneficial effects of melatonin. Physiological and 
immunological adaptations during pregnancy may result in systemic effects that greatly contribute 
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to the development of acute viral infectious diseases such as COVID-19. Melatonin as an adjuvant 
in COVID-19 treatment has anti-inflammatory, anti-oxidative, and immune response regulatory 
functions. The strategy that melatonin offers is to slow the cytokine storm observed and reduce 
oxidative damage to enhance the resistance of individuals and provide additional survival time. 
Although the direct evidence of melatonin application in COVID-19 is unclear, both its use in 
experimental animal models and studies on humans has consistently documented its efficacy and 
safety, and its use by COVID-19 patients would be highly beneficial. 
 

 
Keywords: COVID-19; melatonin; pregnancy. 
 

ABBREVIATIONS 
 
COVID-19  : Coronavirus Disease-2019  
SARS-CoV-2      : Severe Acute Respiratory Syndrome Coronavirus 2  
Ang II             : Angiotensin  
ACE-2  :Angiotensin-Converting Enzyme 2  
IL-18  : Interleukin-18 
IL-6   : Interleukin-6 
IL-8  : Interleukin-8 
IL-20  : Interleukin-20 
IL-12  : Interleukin-12 
IL-1β  : Interleukin -1β 
CXCL  : Motif Chemokine Ligand  
TNF-α  : Tumor Necrosis Factor α  
Th1 cells : Type 1 T helper  
TMPRSS2 : Transmembrane Serine Protease 2  
RNA  : Ribonucleic Acid  
N  : Protein Nucleocapsid  
M  : Protein Membrane  
E  : Protein Envelope  
S  : Protein Spike  
IFN-β  : Interferon beta  
IFN-λ  : Interferon gama  
ARDS  : Acute respiratory distress syndrome  
AT2R  : Ang II receptor 2  
ROS  : Reactive Oxygen Species  
MT1 and MT2 :  Metallothionein 1 and 2 
SNAT  :  Serotonin-N-acetyltransferase  
HOM  : Hydroxyindole-O-Methyltransferase  
NF-E2  : Nuclear Factor Erythroid 2  
NF-κB  : Factor Nuclear Kappa B  
IUI  : Intrauterine Inflammation  
LPS  : Lipopolysaccharide  
 

1. INTRODUCTION 
 
“The World Health Organization declared the 
coronavirus disease-2019 (COVID-19) pandemic 
on March 11, 2020” [1]. “At that time, the origin of 
the disease was yet unclear, but it was known 
that infection by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) 
exacerbated respiratory inflammation, resulting in 
pulmonary oxygen exchange deficit and severe 
pneumonia” [1]. “Alterations in the levels of 
immune cells, including lymphocytes and 

thrombocytes, and some C-reactive proteins, 
lactate dehydrogenase enzymes, and 
angiotensin (Ang) II are seen in COVID-19 
patients” [2]. 
 
“The effects of COVID-19 on pregnant individuals 
are unclear due to a series of physiological 
changes and immune system adaptations that 
regulate the development of the fetus” [2]. 
“During pregnancy, the respiratory, circulatory, 
endocrine, reproductive, and immune systems 
are subject to many changes that may affect the 

https://www.ncbi.nlm.nih.gov/gene/7113
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body’s responses to viral infections. Such 
responses may not be observed in non-pregnant 
individuals” [3]. “The immune response to SARS-
CoV-2 infection and the pathophysiology and 
molecular mechanisms of the disease are yet to 
be understood” [4]. 
 
“Pregnant people represent a high-risk 
population due to a decrease in the number and 
activity of lymphocytes during late gestation, 
which may affect the viral clearance rate and 
delay the viral infection deterioration” [5]. “It has 
also been demonstrated that angiotensin-
converting enzyme 2 (ACE-2), a SARS-CoV-2 
receptor, is highly upregulated during pregnancy, 
which may contribute to increasing the 
susceptibility of this population to SARS-CoV-2” 
[6]. “More importantly, fetuses and newborns are 
highly susceptible to infections due to their 
immature innate and adaptive immune systems” 
[7]. “Dysregulation of factors such as cytokines 
and the complement cascade caused by 
infections may have deleterious consequences 
for brain development and function in fetuses 
and newborns” [8]. 
 
“There is evidence supporting the role of 
melatonin in human pregnancy; melatonin 
appears to be essential for successful 
pregnancy” [9]. “However, in pathological 

conditions such as during SARS-CoV-2 infection, 
melatonin levels can be significantly inhibited” 
[10]. “Moreover, melatonin permits the 
transmission of maternal photoperiodic 
information to generate day/night differences in 
the fetus and circadian organization during 
development, which is essential for the 
maturation of the fetal biological clock” [11]. “In 
addition, melatonin, a powerful endogen 
antioxidant, free radical scavenger, and anti-
inflammatory molecule, has been reported to 
exert beneficial effects on viral diseases such as 
COVID-19” [12]. 
 
Despite this evidence, there are no studies on 
the effects of this indoleamine on pregnancy 
conditions. Therefore, adequate information 
about the relationship between COVID-19 and 
pregnancy is required for better management of 
these patients. Herein, we review the                
current evidence for the role of melatonin                   
in the treatment of COVID-19 in human 
pregnancy. 

 
2. PHYSIOLOGICAL CONDITIONS 

DURING PREGNANCY  
 
The physiologic and immunologic adaptations 
during pregnancy may result in systemic effects 

 

 
 

Fig. 1. The physiology of pregnancy 

Maternal serum pro-inflammatory and anti-inflammatory cytokine levels are regulated during pregnancy. At the 

first trimester, embryo implantation and placentation benefit from systemic pro-inflammatory cytokines. In the 

second trimester, the inflammatory state is low and Th1 cell-mediated immunity is compromised. The 

inflammatory cytokines are presented in the third trimester 
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that determine the susceptibility and severity of 
respiratory infections (Luo, Yin. 2020). 
“Moreover, rather than immunosuppression, a 
successful pregnancy requires a robust, 
dynamic, and responsive immune system” [13]. 
 
“During pregnancy the levels of pro-inflammatory 
and anti-inflammatory cytokine are tightly 
regulated” [13]. “At first, embryo implantation and 
placentation benefit from systemic pro-
inflammatory cytokines such as C-X-C motif 
chemokine ligand (CXCL), tumor necrosis factor 
α (TNF-α), Interleukin (IL)-18, IL-6, and CXCL8, 
after which an anti-inflammatory state leading to 
angiogenesis and enhancing fetal growth. Then, 
a subsequent pro-inflammatory state prepares 
for the initiation of labor in the third trimester” 
[13,14]. “In addition, during the second trimester, 
the inflammatory state is low and Th1 cell-
mediated immunity is compromised” [13,15], thus 
“increasing the susceptibility of pregnant women 
to viral and bacterial infections” [13,15]. “Finally, 
pregnancy could be considered a physiologically 
hypercoagulable state with raised coagulation 
factors, fibrinogen and factor VIII included and 
decreased fibrinolytic proteins” [16]. 
 

3. PHYSIOPATHOLOGY OF COVID-19  
 

SARS-CoV-2 is transmitted via respiratory 
aerosols [17]. Viral particles are inhaled and bind 
to nasal mucosa, infecting the epithelial cells 
[17,18]. In the nasal epithelium, both ciliated and 
mucus-secreting cells express ACE2 and 
TMPRSS2 leading to SARS-CoV-2 releasing 
their RNA inside these cells [19]. It is important to 
note that the coronavirus is made up of four main 
structural proteins: the nucleocapsid (N), 
membrane (M), envelope (E) and spike (S) 
proteins [20]. The S protein of coronaviruses 
facilitates viral entry into target cells [21], the S1 
subunit attaches onto ACE2 and the S2. 
 

Subunit binds the S protein to the membrane 
[22]. The S2 subunit also mediates the 
mechanism to infect new cells [22]. The main 
mechanism is by TMPRSS2 activation but the 
cleavage of S2' site can be provided by 
cathepsins [20]. If there is not enough TMPRSS2 
expressed or the virus-ACE2 complex is unable 
to bind, the virus is internalized iva endocytosis 
and into the late endolysosome the S2' site is 
then cleaved by cathepsins [23,24]. The disease 
progression is related to infected ciliated cells 
shedding their ciliary axonemes, which disables 
mucociliary clearance [25,26]. These infections 
could be asymptomatic or could cause local 
symptoms [18]. 

The virus replicates and releases RNA for further 
infection of neighboring cells, spreading from the 
nasal passage to the upper respiratory tract     
[27]. 
 
The immune response is intensified due to the 
release of CXCL10, IFN-β and IFN-λ from the 
infected cells and leading to symptoms of fever, 
malaise, and dry cough [28]. A great number of 
patients do not progress do not progress farther 
than this stage because the immune system is 
able to contain the infection [29].  
 
The next stage of the disease occurs after the 
virus enters the conducting airways, likely by 
microaspiration of pharyngeal secretions [30]. 
The virus then invades and enters the lower 
respiratory tract via the host’s ACE-2 receptor 
and starts replication to produce more viral 
nucleocapsids [29]. The infected pneumocytes 
release IL-1, IL-6, IL-8, IL-120, and IL-12, TNF-α, 
IFN-λ and IFN-β, CXCL10, monocyte 
chemoattractant protein-1, and macrophage 
inflammatory protein-1α [29]. 
 
The amount of cytokines released attracts 
immune cells such as neutrophils, CD4 helper T 
cells, and CD8 cytotoxic T cells, then becoming 
concealed in the lung tissue [29]. The constant 
apoptosis of the infected cells releases new viral 
particles that infect the adjacent type 2 alveolar 
epithelial cells [31], leading to persistent tissue 
injury and alveolar damage, resulting in acute 
respiratory distress syndrome (ARDS) [32]. In 
ARDS, pulmonary endothelial cells contribute to 
the start and broadcast of this condition by 
changing vessel barrier integrity, supporting a 
pro-coagulative condition, inducing vascular 
inflammation, and reconciling inflammatory cell 
infiltration [17]. It should be noted that the 
majority of COVID-19 patients who die succumb 
to ARDS [29]. 
 
Many other pathways are also involved in the 
progression of the cytokine storm in COVID-19 
patients, such as dysfunction of the RAS due to 
the downregulation of the ACE-2 receptor by 
binding of the S-protein of SAR-CoV-2 with 
ACE2 [33]. Notably, the RAS plays an important 
role in severe acute lung injury because ACE-2 
plays a role in lung protection [33]. Since ACE-2 
catalyzes the degradation of Ang II into Ang, low 
levels of ACE-2 increase Ang II levels, which in 
turn causes AT1R stimulation and Ang II receptor 
2 (AT2R) inactivation [33]. AT1R is involved in 
functions including aldosterone, vasopressin, and 
adrenocorticotropic hormone secretion, 
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potassium levels, sodium reabsorption, 
inflammation, cell proliferation, and lung injury, 
whereas AT2R has a lung-protective function 
[33]. Due to the imbalance between these two 
receptor functions, the actions of AT1R dominate 
and result in lung injury and hypokalemia [33]. 
Thus, cytokine storm and ACE-2           
downregulation lead to pulmonary vascular 
hyperpermeability and pulmonary edema, 
inducing ARDS [33]. An increase in vascular 
permeability due to clot formation occurs,              
which leads to multiorgan damage and death 
[33]. 
 

4. COVID-19 IN PREGNANCY 
 

SARS-CoV-2 infection in pregnant women can 
entail several obstetric complications such as 
thrombosis, poor development of vasculature, 
premature rupture of the fetal membrane, 
deposition of fibrin within the fetal vasculature, 
and vascular malperfusion of the fetus [34]. 
Notably, obstetric complications in COVID-19 
can be induced by both direct viral effects (e.g., 
via ACE-2 receptors and viral replication)                  
and subsequent hyperinflammatory responses 
[35]. 
 

COVID-19 induces hypercoagulability that results 
from the concurrent activation of clot and 
fibrinolytic cascades, causing both thrombus and 
clotting factor consumption [36]. Thus, the 
manifestations can be either thrombotic or 
hemorrhagic [37,38]. Thrombosis has similarly 
been reported in pregnant women and the 
general population [39]; however, pregnant 
women are more likely to suffer from thrombotic-
hemorrhagic catastrophic events [40,41]. 
 
SARS-CoV-2 can impact the developing fetus as 
a result of vertical transmission or indirectly by a 
viral infection of the placenta [42]. Evidence of 
viral presence in the human placenta has been 
reported in the syncytiotrophoblast layer of the 
chorionic villi [43-45]. Previous studies have 
demonstrated that the virus in inducing immune 
responses causes fetus rejection and placental 
compromise, resulting in placental inflammation 
[46]. Thus, the fetal inflammatory syndrome can 
occur due to the mother’s response to infection, 
promoting a fetal inflammatory response with 
high levels of inflammatory cytokines in the 
placenta [47]. The hyperinflammatory 
environment has a deleterious effect on fetal 
neurodevelopment [48] (Fig. 2). 
  

 
 

Fig. 2. The SARS-CoV-2 infection in pregnant women 
The physiologic and immunologic adaptations during pregnancy may result in systemic effects that determine the 

susceptibility and severity of respiratory infections. Pregnancy could be considered a physiologically 
hypercoagulable state with raised coagulation factors. Thus, the SARS-CoV-2 infection in pregnant women can 
entail several obstetric complications such as placental inflammation, vertical transmission, viral infection of the 
placenta, fetal inflammatory syndrome. These complications can be induced by both direct viral effects (e.g., via 

ACE-2 receptors and viral replication) and subsequent hyperinflammatory responses 
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5. ROLE OF MELATONIN IN PREGNANCY  
 
Melatonin is mainly synthesized and secreted by 
the pineal gland, but other organs in the 
reproductive system can also synthesize this 
hormone [49]. The receptors metallothionein 
(MT)1 and MT2 were identified in the granulosa 
luteal cells and the placental villous trophoblasts, 
and serotonin-N-acetyltransferase (SNAT) and 
hydroxyindole-O-methyltransferase (HOM) are 
found in the brain, retinal photoreceptors, 
immune system, skin cells, and gastrointestinal 
cells [50]. The main role of melatonin synthesis, 
through the activation of these receptors in these 
systems, is to reduce the oxidative damage due 
to different cell stimuli [51]. 

 
Melatonin and cortisol are the main hormones 
that control the circadian rhythm; however, in 
pregnant women, estrogen and progesterone 
levels are also altered in a circadian manner [11]. 
These two ovarian hormones are secreted during 
gestation over different temporal patterns. While 
progesterone levels peak during dark hours, 
estrogen peaks during the day [52]. Both 
hormones are produced by the placenta itself, 
and the uterus also produces estrogen. By 
producing estrogen, the uterus maintains 

epithelial proliferation to support implantation and 
promotes progesterone synthesis by the 
placenta, which maintains immunosuppressive 
properties and reduces oxidative damage         
[53]. 
 
The villous trophoblast cells are not only able to 
produce melatonin but also express MT1 and 
MT2 receptors, which provide paracrine, 
autocrine, and intracrine effects in the placenta, 
thus maintaining a healthy syncytiotrophoblast 
layer, protecting it from oxidative stress [50]. The 
placenta also produces the neuropeptide 
vasoactive intestinal polypeptide [54]. It is known 
that vasoactive intestinal polypeptide is able to 
increase SNAT activity and melatonin production 
and is involved in the control of smooth muscle 
tissue [54]. 
 

This enhanced production increases maternal 
plasma melatonin, and during the late third 
semester, the levels of melatonin are at their 
highest [11]. This may be attributed to the high 
placental and leukocyte production of reactive 
oxygen species (ROS). The imbalance between 
melatonin and ROS levels can lead to pregnancy 
complications and conditions such as 
preeclampsia [55]. 

 

 
 

Fig. 3. The melatonin synthesis 
Melatonin synthesis depends on dark periods during which the tryptophan hydroxylase enzyme converts L-
tryptophan to 5-hydroxytryptophan. Subsequently, 5-hydroxytryptophan is decarboxylated by the aromatic 

enzyme L-amino acid decarboxylase to form 5-hydroxytryptamine (serotonin). When the light stimulus fades, 
norepinephrine activates the expression of cAMP, serotonin-N-acetyltransferase (SNAT), and hydroxyindole-O-
methyltransferase (HOM). SNAT converts serotonin to N-acetyl-serotonin, and HOM methylates it to melatonin. 
Melatonin is mainly synthesized and secreted by the pineal gland, but other organs in the reproductive system 

can also synthesize this hormone 
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In addition to placental adaptation, melatonin 
also triggers the fetal system to adjust the 
circadian rhythm, directly affecting 
neurodevelopment, and protecting the fetus 
against ROS [11]. Maternal melatonin oscillations 
help trigger the fetus' circadian rhythm, and 
disturbances in this process induce negative 
consequences in newborn babies [11].  

 
6. MELATONIN AS AN ANTIVIRAL 

AGENT AGAINST SARS-CoV-2  
 
Melatonin has shown antiviral properties that 
could help against acute lung injury, thrombosis, 
sepsis, mortality rate and ARDS induced by 
bacterial and viral infections [56-58]. Its anti-
inflammatory and anti-oxidative properties may 
be helpful in critically ill patients [12] and may 
also interact with ACE-2 and B-cell lymphoma 2-
like human proteins that are essential for SARS-
CoV-2 development [59]. The mechanism of 
action is illustrated in Fig. 4. 
 

The effects are mediated by melatonin receptors 
(MTs) that channel the response to hormones 
throughout the organism [60]. MT1 is distributed 
in the retina, hypothalamus suprachiasmatic 
nuclei, pars-tuberalis of the pituitary gland, liver, 

and skin and is involved in the modulation of 
brain functions [12,61]. Melatonin can penetrate 
cells and interact with both the membrane 
surface and intracellular receptors,                
resulting in the regulation of pathways 
responsible for DNA damage responses, tumor 
metabolism, angiogenesis, and cell signaling 
[62]. 
 

Previous human trials have demonstrated the 
efficacy of melatonin in the reduction of elevated 
levels of cytokines in inflammatory pathologies, 
suggesting that melatonin may be useful in the 
treatment of COVID-19 [63-67]. A combination of 
mercaptopurine and melatonin has been 
suggested to be a potential treatment for COVID-
19, acting synergistically to target papain-like 
protease, ACE-2 and c-Jun signaling, and anti-
inflammatory cascades [68]. The possible anti-
inflammatory mechanisms of melatonin involve 
upregulation of sirtuin-1 and suppression of NF-
E2-related factor 2, promoting a decrease in the 
proinflammatory cytokines (TNF, IL-6, IL-10) and 
an increase in the anti-inflammatory cytokine IL-
10 [69]. Previous studies conducted by our group 
demonstrated the potential melatonin anti 
inflammatory and analgesic effects in humans 
and rats [70-76]. 

 

 
 

Fig. 4. Effects of melatonin in COVID-19 
Melatonin is a promising adjunctive drug for viral infections because of its anti-inflammatory, anti-apoptotic, 

immunomodulatory, and powerful antioxidant properties. The effects are mediated by melatonin receptors (MTs) 
that channel the response to hormones throughout the organism. The possible anti-inflammatory mechanisms of 
melatonin involve upregulation of sirtuin-1 and suppression of NF-E2-related factor 2, promoting a decrease in 

the proinflammatory cytokines (TNF, IL-6, IL-10) and an increase in the anti-inflammatory cytokine IL-10. Also, it 
could affect the anti-inflammatory cascades and ACE-2 and c-Jung signaling. Melatonin could inhibit NLRP3 
inflammasome protecting macrophages from pyroptosis presented in lung pathology caused in SARS-CoV-2  

infection. The antioxidant properties of this indolamine are linked to increased activity of superoxide dismutase, 
glutathione peroxidase, reductase, and catalase 
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The antioxidant properties of melatonin may be 
beneficial in relieving the clinical symptoms of 
COVID-19 [77]. Melatonin may prolong the 
survival of infected patients, indicating that the 
immune system of these patients recovers due to 
virus elimination [12,78]. 
 
In a mouse model of bacterial pneumonia, 
melatonin was shown to inhibit pneumonia by 
interfering with the NLRP3 inflammasome, 
protecting macrophages from pyroptosis [79]. 
Other studies have indicated that melatonin may 
be a promising inhibitor of pyroptosis and 
associated pathologies [79-84]. 
 
Other possible indirect effects of melatonin in 
COVID-19 patients include restoring normal 
sleep habits and reducing anxiety [85]. Long-
term sleep deprivation and/or chronic stress 
leads to the deterioration of immune functions 
through the disturbance of barrier mechanisms 
by suppressing phagocytosis, reducing the 
proliferation and activity of some leukocytes, in 
particular CD4þ T cells, while increasing T-
suppressors, elevating oxidative stress, and 
inducing a pro-inflammatory background [86]. 
 

7. MELATONIN SUPPLEMENTATION IN 
PREGNANCY 

 
Melatonin has high biological safety, and 
exogenous melatonin can be used in a variety of 
doses, including extreme doses [87]. Despite the 
lack of long-term studies exploring the clinical 
safety of exogenous melatonin, some clinical 
trials show that even at doses higher than 
physiological concentrations, exogenous 
melatonin use is safe [87]. Besides, there is 
evidence that large doses of melatonin do not 
cause irreversible damage or intolerable side 
effects, setting the safe margin to 3750 mg/day 
for a 75kg individual [88].  
 
Melatonin is available in different administration 
forms and it is not known which routes are ideal 
for pregnant women [89] in order to consider it a 
potential interventional and prevention of 
pregnancy complications due to SARS COV-2 
infection [90]. It is essential to research more 
about pharmacokinetic and pharmacodynamics 
profile of exogenous melatonin in order to 
guarantee its safe administration and follow up of 
babies exposed in utero [90]. 
 
Maternally administered exogenous melatonin 
crosses the placenta at or near term, similar to a 
freely diffusible marker and without significant 

metabolism [91]. This well described crossing 
placental barrier, and its binding to MT1 and MT2 
placental receptors, reinforces its effects upon 
fetal development; the role of the mother’s own 
circadian rhythm as the first zeitgeber the fetus is 
exposed to, which in turn modulates fetal 
neuroendocrine and immune development, and 
confers antioxidant protection [92-94]. In 
addition, Miller et al. found reduced levels of 
malondialdehyde, which is a placental oxidative 
biomarker in melatonin supplementation in 
pregnancy [95]. 
 
After the administration, serum melatonin levels 
peak 2 hours [96] and maternal and fetal 
concentrations reach equilibrium within 150 
minutes [97].  We found no clinical trials whose 
primary outcomes were the safety and efficacy of 
melatonin during pregnancy. Three clinical trials 
used melatonin for conditions during pregnancy 
such as hyperglycemia [98], preeclampsia [99] 
and IUGR [96] reported some efficacy for each 
condition, although sample sizes were small. It is 
important to note that none of the three trials 
reported safety concerns or adverse maternal or 
fetal events related to melatonin administration 
during pregnancy. The dose used in these 
studies ranged from 8 to 30 mg daily. The trial 
with the highest daily dose (30 mg) reported no 
increased daytime drowsiness, which is an 
important safety finding [99]. The safety concerns 
about melatonin use in pregnancy originated 
from animal studies and include decreased birth 
weight [100] altered circadian rhythm 
development [101], and mortality [102]. 

 

8. THE ROLE OF MELATONIN IN 
CORONAVIRUS DURING PREGNANCY  

 
The coronavirus infection in pregnancy induces 
the production of proinflammatory, 
antiinflammatory cytokines and oxidized products 
that activate the maternal immune system and 
can cross the placental barrier [103-105]. The 
developing fetus can be impacted directly by viral 
infection as a result of vertical transmission (i.e. 
transmission from mother to fetus) or indirectly 
by viral infection of the placenta [106]. 
 

Inhibition of melatonin by most viruses suggests 
that this indoleamine can be useful in the 
management of viral infections, such as COVID-
19 [107].  Furthermore, melatonin has protective 
effects against cellular insults that occur 
perinatally, leading to neuroprotective properties 
because of the reduction of proinflammatory 
response caused by the oxidative stress and 
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Fig. 5. The role of melatonin in pregnant women with coronavirus 
Host response to coronavirus infection in pregnancy induces the production of proinflammatory, antiinflammatory 
cytokines and oxidized products that activate the maternal immune system and can cross the placental barrier. 

The developing fetus can be impacted directly by viral infection as a result of vertical transmission or indirectly by 
viral infection of the placenta. Melatonin has several neuroprotective properties through the reduction of oxidative 
stress, proinflammatory response and apoptotic cell death. This indoleamine could decrease neuroinflammation 
and perinatal brain injury, thus preventing neuromotor impairment. Circadian rhythm and melatonin are essential 

in controlling the endocrine system and metabolism; these systems are involved in the production of cortisol, 
which plays a key role in lung maturation of the fetus 

 
avoiding apoptotic cell death [108-112]. The 
melatonin pretreated group showed decreased 
neuroinflammation and perinatal brain injury with 
normal neuronal differentiation of neuroblasts in 
the cortical plate compared to those not 
pretreated with melatonin [113]. 
 

In addition, melatonin prevented the increased 
apoptotic activity of fetal neurons under hypoxia, 
possibly induced by a hypercoagulable state as a 
result of intrauterine inflammation [114]. 
Melatonin can improve hemodynamics at the 
maternal-placental interface, which is essential 
for fetal growth under intrauterine inflammation 
conditions because of the increased risk of 
hypoxic-induced brain ischemia from a 
hypercoagulable state in the placenta [115]. 
 
Fetal mice that grew under LPS-induced 
intrauterine inflammation, when pretreated with 
melatonin, had lower levels of inflammation (NF-
κB, IL-1β) in the placenta and increased 
expression of silent information regulator 2 
homolog 1/nuclear factor erythroid 2-related 
factor 2 in uterine strips than those not pretreated 
with melatonin [113]. In another study, pregnant 
mice pretreated with melatonin before LPS-
induced IUI showed significantly reduced 

inflammatory mediators, and it prevented an 
increase of the oxidative stress marker (4-
hydroxy-2-nonenal) in the placenta [116]. 
 
Finally, circadian rhythm and melatonin are 
essential in controlling the endocrine system and 
metabolism; these systems are involved in the 
production of cortisol, which plays a key role in 
lung maturation of the fetus, and aids the 
mobilization of glucose and fatty acids from the 
liver to meet the high metabolic demands of the 
fetus [11,117] (Fig. 5). 

 

9. CONCLUSION 
 
We have provided an overview of the knowledge 
currently available about COVID-19 during 
pregnancy and explored the possible beneficial 
effects of melatonin.  
 
Physiological and immunological adaptations 
during pregnancy may result in systemic effects 
that greatly contribute to the development of 
acute viral infectious diseases such as COVID-
19. It is important to note that obstetric 
complications in COVID-19 could be induced by 
both direct viral effects (e.g., through ACE-2 
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receptors or viral replication) and subsequent 
hyperinflammatory responses.  
 
Melatonin as an adjuvant in COVID-19 treatment 
has anti-inflammatory, anti-oxidative, and 
immune response regulatory functions. The 
strategy that melatonin offers is to slow the 
cytokine storm observed and reduce oxidative 
damage to enhance the resistance of individuals 
and provide additional survival time. Although the 
direct evidence of melatonin application in 
COVID-19 is unclear, both its use in 
experimental animal models and studies on 
humans has consistently documented its efficacy 
and safety, and its use by COVID-19 patients 
would be highly beneficial. 
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