
Citation: Zhang, Z.; Zhan, F. Type 2

Cystatins and Their Roles in the

Regulation of Human Immune

Response and Cancer Progression.

Cancers 2023, 15, 5363. https://

doi.org/10.3390/cancers15225363

Academic Editor: Constantin

N. Baxevanis

Received: 21 September 2023

Revised: 8 November 2023

Accepted: 8 November 2023

Published: 10 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Type 2 Cystatins and Their Roles in the Regulation of Human
Immune Response and Cancer Progression
Zijun Zhang and Fenghuang Zhan *

Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of
Arkansas for Medical Sciences, Little Rock, AR 72205, USA; zzhang4@uams.edu
* Correspondence: fzhan@uams.edu

Simple Summary: Type 2 cystatins are a group of small secreted protease inhibitors that regulate
cysteine protease cathepsins and legumain. These enzymes regulate important cellular processes
that are linked to the immune response and tumor progression, playing important roles in both
autoimmune diseases and various types of cancers. This review aims to explore the roles of type
2 cystatins in immune regulation and cancer development, shedding light on their significance in
maintaining health.

Abstract: Cystatins are a family of intracellular and extracellular protease inhibitors that inhibit
cysteine cathepsins—a group of lysosomal cysteine proteases that participate in multiple biological
processes, including protein degradation and post-translational cleavage. Cysteine cathepsins are
associated with the development of autoimmune diseases, tumor progression, and metastasis. Cys-
tatins are categorized into three subfamilies: type 1, type 2, and type 3. The type 2 cystatin subfamily
is the largest, containing 10 members, and consists entirely of small secreted proteins. Although type
2 cystatins have many shared biological roles, each member differs in structure, post-translational
modifications (e.g., glycosylation), and expression in different cell types. These distinctions allow the
type 2 cystatins to have unique biological functions and properties. This review provides an overview
of type 2 cystatins, including their biological similarities and differences, their regulatory effect on
human immune responses, and their roles in tumor progression, immune evasion, and metastasis.
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1. Introduction

Cysteine cathepsins, categorized as papain-like cysteine proteases, form a large group
of cysteine-cleaving proteases that play crucial roles in various cellular processes, including
extracellular matrix maintenance, immune surveillance, and cell infiltration [1]. The human
cathepsin family comprises 11 members that are cysteine proteases. Cathepsin B, C, F,
H, L, O, V, and X are ubiquitously expressed, whereas cathepsin K, S, and W are pre-
dominantly expressed in osteoclasts, cytotoxic lymphocytes, and antigen-presenting cells,
respectively [2]. Cathepsins play important roles in oncogenesis and autoimmune diseases
by mainly activating inflammatory responses and promoting extracellular matrix (ECM)
degradation. Therefore, studying both cathepsins and their inhibitors holds immense value
for understanding their role in both normal and diseased contexts.

Cystatins, originally isolated from chicken egg whites and subsequently found in
various organisms, serve as natural inhibitors of cysteine cathepsins [3,4]. The human
cystatin superfamily is categorized into three subfamilies (Figure 1A). Type 1 cystatins, also
known as stefins, are small intracellular proteins of approximately 11 kDa that lack disulfide
bonds. Type 2 cystatins, often called cystatins, are small (13–14 kDa) secreted proteins.
Type 3 cystatins, also called kininogens, are large (88–114 kDa) glycosylated proteins that
contain at least 1 type 2 cystatin-like cathepsin inhibitory sequence. Most cystatin members

Cancers 2023, 15, 5363. https://doi.org/10.3390/cancers15225363 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15225363
https://doi.org/10.3390/cancers15225363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://doi.org/10.3390/cancers15225363
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15225363?type=check_update&version=1


Cancers 2023, 15, 5363 2 of 21

belong to the type 2 cystatin subfamily [5]. Although type 2 cystatins likely evolved from a
common ancestral gene and share a similar overall structure, these cystatins exhibit distinct
expression patterns, chemical properties, and biological functions. Therefore, it is likely that
each member of the type 2 cystatin subfamily has different physiological processes within
the human body. Since multiple cathepsins promote immune response activation, type 2
cystatins are natural immunosuppressants. Additionally, since cathepsins also enhance cell
migration, type 2 cystatins also have anti-tumor functions. Type 2 cystatins also have non-
protease inhibitory functions and can modulate several important immune and oncogenic
pathways, making their role in tumor development and progression intricate. This review
describes the immunomodulatory and oncologic roles of each type 2 cystatin with the goal
of providing an overview of the immune-oncology axis of type 2 cystatins.
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Figure 1. (A) The categorization of cystatins. (B) The structure of cystatins. Using cystatin C as an
example. The coordinate file was retrieved from RCSB PDB, id: 3GAX. The image was generated
using PyMOL (Schrodinger). The green region represents the cathepsin inhibitory site and the yellow
residue represents the LGMN inhibitory site. This structure was originally discovered and published
by Kolodziejczyk et al. [6].
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2. Cystatins as Protease Inhibitors

There are 10 known type 2 cystatin genes, each encoding a different cystatin protein
(Table 1). All type 2 cystatin genes are located on chromosome 20p11.21, except for CST6,
which is found on 11q13.1 [7]. Human type 2 cystatins share a common 3D structure
(Figure 1B). The peptide sequence forms a protein with one beta sheet connected to an
alpha helix connected to four beta sheets. This peptide folds into a structure in which the
five beta sheets are arranged in an antiparallel form, covering the alpha helix at the top [5].
Several conserved regions are shared among human type 2 cystatins, and these conserved
regions are highly relevant to their ability to inhibit protease function (Figures 2 and S1).
The G-QXVXG-VPW sequence is capable of inhibiting cathepsins and composed of three
conserved sequences: the G near the N-terminus, the QXVXG fragment in the middle of the
amino sequences, and the VPW fragment close to the C-terminus [5]. These three sequences
form a wedge-shaped structure within the overall 3D structure and bind to the V-shaped
cleft of cathepsin that contains the active site, thus effectively masking the active site and
inhibiting protease function [5,8]. Additionally, three members of type 2 cystatins—cystatin
C, E/M, and F—can inhibit asparaginyl endopeptidase (i.e., legumain), one of only two
members of the peptidase family C13 that is closely related to the cathepsin superfamily
C1 [4,9]. The conserved post-helix N residue in type 2 cystatins directly binds to the active
site of legumain, which is located on the opposite side of the cathepsin inhibitory site in
the 3D structure [4,10–12]. Thus, cystatin C, E/M, and F act as competitive inhibitors of
legumain. The following subsections will briefly cover the features and functions of each
type 2 cystatin in healthy individuals.

Table 1. List of Type 2 Cystatins. Gene location info retrieved from the NCBI database of each gene.

Name of Gene Encoded Protein Gene Location Site of Expression

CST1 Cystatin SN 20p11.21 Parotid gland, lacrimal gland [13]
CST2 Cystatin SA 20p11.21 Parotid gland [13]
CST3 Cystatin C 20p11.21 Ubiquitous [14]
CST4 Cystatin S 20p11.21 Parotid gland [13]
CST5 Cystatin D 20p11.21 Parotid gland, lacrimal gland [13]
CST6 Cystatin E/M 11q13.1 Epidermal tissue [15]
CST7 Cystatin F 20p11.21 Hematopoietic cells [16]
CST8 Cystatin 8 20p11.21 Testis [14]
CST9 Cystatin 9 20p11.21 Testis [14]
CST11 Cystatin 11 20p11.21 Testis [14]

2.1. SD-Type Cystatins: Cystatin SN, SA, S, D (CST1, CST2, CST4, CST5)

The SD-type cystatins, named from the combination of cystatin S and cystatin D,
include four members: cystatin SN, SA, S, and D. Cystatin SN, SA, and S contain 113 amino
acids and are approximately 90% identical to each other. Along with cystatin D, these pro-
teins share an identity of more than 55% [17–19]. These cystatins are exclusively expressed
in parotid and submandibular glands and are found in human saliva, hence why they are
sometimes called “salivary cystatins” [13]. The SD-type cystatins play an important role in
maintaining a healthy oral environment. SD-type cystatins inhibit proteolytic events induced
by cathepsin B, H, and L. The dysregulation of these proteolytic events causes periodontal
tissue destruction which ultimately leads to bacteria colonization and periodontal disease [20].
Additionally, SD-type cystatins show anti-microbial function and can inhibit the growth
of multiple bacteria strains, including Aggregatibacter actinomycetemcomitans, Streptococcus
pyogenes, and Porphyromonas gingivalis in in vitro experiments [21–23]. The anti-microbial
mechanism of SD-type cystatins is not fully understood, but SD-type cystatins may be
inhibiting proteolytic activity necessary for growth promotion in the bacteria [24]. This
antimicrobial effect is also observed in human cystatin C and cystatins isolated from other
species [25]. Given the conserved nature of this antimicrobial effect, type 2 cystatins may
have originally served as antimicrobials [26].
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Figure 2. The schematic diagram of key region alignment of type 2 cystatin family. The sequence
of each cystatin was retrieved from the NCBI GenPept database. Multiple sequence alignment was
performed by Clustal Omega and Boxshade. The conserved G-QXVXG-VPW fragment is highlighted
in red and post-helix N is highlighted in blue.

Cystatin SN (CYS1), encoded by the gene CST1, is the most studied SD-type cystatin.
CYS1 has a similar cathepsin inhibitory function with the ubiquitous cystatin C; however,
the inhibitory efficiency of CYS1 is much lower than that of cystatin C [8,19,27].

Cystatin SA, also referred to as cystatin 2 (CYS2), is encoded by CST2. Its amino acid
sequence is 87% identical with cystatin SN and 90% identical with cystatin S. The CST2
locus has two allele variants that encode cystatin SA1 and cystatin SA2. These alleles only
differ by two amino acids (SA2 contains G79D and E140D polymorphisms in comparison to
SA1). The gene frequency of cystatin SA1 is 0.935, and the gene frequency of cystatin SA2
is 0.065 [28]. The G79D polymorphism is within the highly conserved QXVXG fragment,
and this makes cystatin SA2 a weaker protease inhibitor than cystatin SA1 [29]. Currently,
there are no studies that reveal any other function of cystatin SA2.

Cystatin S (CYSS), originally called SAP-1, is encoded by CST4 [30,31]. CYSS shows
very similar activity to cystatin SN and SA, but CYSS contains a higher Asp+Glu/Asn+Gln
ratio, making CYSS a more acidic protein [32]. CYSS has an F instead of a V within
the QXVXG fragment. This makes CYSS the weakest cathepsin inhibitor among all the
type 2 cystatins [19]. CYSS is largely expressed in the submandibular and parotid glands
of humans and rats [33]. Although it is a weak cathepsin inhibitor, CYSS retains an
antibacterial function and inhibits the growth of Porphyromonas gingivalis [23]. Since its
discovery, CYSS is most often used as a prognostic biomarker of dry eyes [34].

Cystatin D (CYSD) is encoded by CST5, a homolog of CST1, CST2, CST3, and CST4.
CYSD is a small 122-amino-acid protein that shares more than 50% identity with cystatin
SA, SN, C, and S. CST5 has two alleles, which encode two forms of CYSD. The two forms
of CYSD differ by either a C or an R at residue 26. Both variants act as protease inhibitors
and have the same activity [35]. Compared with other SD-type cystatins, CYSD is a less
potent inhibitor of cathepsin L and does not inhibit cathepsin B. However, CYSD is a much
stronger inhibitor of cathepsin S and cathepsin H [18]. Clinically, CST5 is considered an
early biomarker of traumatic brain injury [36].
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2.2. Cystatin C (CST3)

CST3 encodes cystatin C (CYSC), which was first found in human saliva [37]. CST3 was
originally categorized as an SD-type cystatin until scientists realized that CST3 expression is
not limited to parotid and submandibular glands [38]. Instead, it is ubiquitously expressed
in all nucleated cells [14,39]. CST3 is likely the ancestral gene of all the members of the
type 2 cystatin family [19]. CST3 is a housekeeping gene. It is ubiquitously expressed
at relatively low levels throughout the human body [14]. The highest CST3 expression
is found in the brain and salivary glands. CYSC is also present in all body fluids, with
the highest CYSC concentration found in brain fluid, semen, and breast milk [14]. This
indicates that CYSC may be related to reproduction. However, its reproduction-related
function and mechanism remain to be elucidated. Because of its small size, CYSC can be
filtered by the glomerulus without being reabsorbed by the kidney’s proximal convoluted
tubule. At the same time, the proximal tubular cells catabolize their own CYSC but do not
secrete it [40]. As a result, CYSC is widely used as a marker for the estimated glomerular
filtration rate (eGFR), a standard for kidney function diagnosis [41,42].

CYSC can dimerize by 3D domain swapping, a process in which two CYSC molecules
exchange the position of their α1 helix and β1 and β2 strands [43]. During this exchange,
the L1 loop of CYSC, which is required for cathepsin inhibitory activity, is disturbed. As a
result, dimerized CYSC is inactive and unable to inhibit cathepsins [43,44]. Extracellular
CYSC is mainly produced by macrophages and dendritic cells (DCs). Cells synthesize
CYSC as both dimers and monomers; however, only the active monomer is secreted into
the extracellular space [44].

Like the SD-type cystatins, CYSC also has antibacterial activity [22]. Since CYSC is
a housekeeping protein, it is likely one of the systematic regulators of general cellular
cathepsin activity. In the brain, cathepsin B, one of the known targets of CYSC, degrades
amyloid beta, a protein associated with neurodegeneration [45,46]. At the same time, the
domain-swapping property of CYSC can also promote amyloid beta plaque formation.
CYSC dysregulation induced by a polymorphism or mutation is highly linked to the patho-
genesis of neurodegeneration and Alzheimer’s disease [45,47,48]. A study conducted by
Wahlbom et al. showed that CYSC with L86Q, a common mutation in cerebral amyloidosis
patients, does not form normal dimers by domain swapping. Instead, CYSC oligomerizes
by continuously inserting its α1-β1-β2 domain into the flexible region of the next CYSC
molecule. This leads to the formation of a large donut-shaped oligomer, which eventually
causes amyloid fibril generation [49].

2.3. Cystatin E/M (CST6)

Cystatin E/M (CYS6) was simultaneously identified by two groups: one group isolated
CYS6 from epithelial cells and named it cystatin E; the other group identified CYS6 mRNA
downregulated in breast cancer, and they named it cystatin M [50,51]. Eventually, scientists
discovered that the same gene encodes cystatin E and M and the proteins have the same
amino acid sequence. Therefore, the protein encoded by CST6 was renamed cystatin E/M.
Compared with other members of the type 2 cystatin subfamily, CST6 is the only cystatin
gene located on chromosome 11q13 [52]. CYS6 is one of three cystatins that can inhibit
cathepsins and legumain and is currently the strongest legumain inhibitor. CYS6 is one of
two glycoproteins in the type 2 cystatins subfamily. It has an N-linked glycosylation site
at residue 137, attached to a mannose-6-phosphate-rich glycan [53]. The function of the
glycan on CYS6 has not been deduced in the current literature. Similar to CYSC, CYS6 can
dimerize via domain swapping; however, the CYS6 dimer is only generated in vitro in a
high-temperature, destabilizing condition [54].

In healthy individuals, low levels of CYS6 were found in most human tissues. High
levels of CYS6 were found in human cutaneous epithelia, hair follicles, sebaceous glands,
and sweat glands [15]. Within the category of mucosal body fluids, the highest concen-
tration of cystatin E/M was found in semen, with levels as high as 500 ng/mL [55]. This
indicates that CYS6 may play a role in reproduction, but currently, there are no studies
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in this area. High cystatin E/M expression in epidermal tissue is highly related to skin
development and epidermal homeostasis. One of the known targets of CYS6, cathepsin V,
degrades desmosomal proteins, including DSG1, DSC1, and CDSN. Another target of CYS6,
cathepsin L, activates transglutaminase 3 [56]. Cystatin E/M regulates the desquamation
and cornification process by inhibiting cathepsin V and L activity with high efficiency. The
dysfunction of CST6 results in dry skin and keratosis caused by unregulated proteolytic
events induced by cathepsin V, L, and legumain in the epidermis [57,58]. Knockdown of
CST6 in vitro causes deficient development of the multilayer epidermis [59]. Mice null for
CST6 (i.e., ichq mice) exhibit multiple abnormalities related to epidermal development, in-
cluding keratosis, dry skin, hair loss, hypotrichosis, and even neonatal lethality. Fortunately,
these phenotypes can be partially rescued by cathepsin L knockdown [60].

2.4. Cystatin F (CST7)

Cystatin F (CYSF), also referred to as cystatin-like metastasis-associated protein
(CMAP) or leukocystatin, is encoded by CST7 [16,61]. Human CYSF is a glycoprotein
that has 145 amino acids. It has a glycosylation site on N62 and N115 [62]. It shares ap-
proximately 35% identity with CYSC, 30% with SD-type cystatins, and 32% with CYS6 [62].
CYSF is a potent inhibitor of cathepsin F, K, and V and it can also weakly inhibit cathepsin
S and H. CYSF cannot inhibit cathepsin C and X in kinetic measurement experiments
when only the enzyme and the substrate are present in the system [63]. However, the
inhibition of cathepsin C can be observed in myeloid cells in both in vitro and in vivo
experiments [64–66]. This activity difference is attributed to the cellular processing of CYSF,
where cleavage of the N-terminus region enables CYSF to inhibit cathepsin C. CYSF is
selectively expressed by hematopoietic cells, especially in NK cells, T cells, and DCs [16,62].
Tissue from the spleen, bone marrow, lymph nodes, and lung express the highest levels of
CST7 [14,67].

CYSF is capable of dimerization through disulfide bonds, which differs from the
dimerization mechanism of domain swapping utilized by CYSC and CYS6. CYSF is
synthesized as a dimer, which is inactive due to steric hindrance [68]. After synthesis,
the inactive dimer is delivered to the lysosome and cleaved by the proteasome, a process
mediated by the glycosylation on CYSF [68]. Similar to all type 2 cystatins, CYSF is a
secreted protein; however, after secretion, CYSF is quickly taken up by its secreting cell and
delivered to the lysosome as a functional protease inhibitor via the mannose-6-phosphate
pathway [68]. CYSF is an important immune modulator in healthy individuals. The role of
CYSF as an immune modulator is covered in detail in the next section.

2.5. Testatins: CST8, CST9, CST11

Cystatin 8, 9, and 11 are selectively expressed in the testis and are thought to play
a role in the reproductive system [69]. Therefore, they are also referred to as testatins.
Currently, there are very few papers studying testatins and no detailed conclusion could be
drawn on their accurate function. One paper reported that the loss of function of CST8 is
related to reduced fertility and abnormal testis development [70]. Although a few studies
have reported that CST9 is linked to cancer development, no study has focused on the
oncogenic roles or immune modulatory roles of testatins [71]. Therefore, they will not be
covered in this review.

3. Cathepsin, Legumain, and Cystatins as Immune Modulators

To introduce the immune-modulatory role of cystatins, it is important to also briefly
cover the immunomodulatory role of their target proteins, which are cathepsins and
legumain. Cathepsin C, S, L, K, and legumain are involved in autoimmune regulation and
exhibit pro-inflammatory functions.

Cathepsin C regulates the maturation of neutrophil serine proteases (NSPs). The
secretion of NSPs helps to degrade invading microorganisms and represents one of the
major anti-bacterial mechanisms of neutrophils. NSPs also participate in inflammatory
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response regulation by proteolytically modifying or degrading extracellular inflammatory
cytokines and chemokines and catalyzing the activation of inflammatory response-related
receptors [72]. NSPs are initially generated as zymogens, which have a dipeptide structure
at their N-terminus, keeping the protein in an inactive state. Cathepsin C cleaves this
dipeptide to activate the NSPs [73]. In addition, cathepsin C regulates the activity of
granzyme B, which is related to the immune response of CD8+ T cells and natural killer
(NK) cells [74].

Cathepsin S is required for MHC class II antigen presentation since maturation of the
MHC class II molecules depends on cathepsin S activity [75,76]. In antigen-presenting cells,
the MHC-li chaperone complex is first generated. The li peptide in the MHC-li complex
is a 10 kDa invariant peptide chain that masks the antigen binding site of MHC class II
molecules, thereby inactivating the whole MHC class II molecule. The MHC-li complex is
then delivered to the lysosome and the li peptide is cleaved by cathepsin S to activate the
MHC class II molecule [77,78]. As a result, cathepsin S is mainly an immune modulator
that enhances immune surveillance.

Cathepsin L is also involved in the maturation of MHC class II molecules in
macrophages [79]. Additionally, cathepsin L is an activator of perforin, a key enzyme
involved in pore formation by cytotoxic lymphocytes [74,80].

Cathepsin K, a collagenase that is selectively expressed in osteoclasts, is associ-
ated with autoimmune disease. It plays an important role in bone matrix remodeling
and mediates the inflammatory stress on the bone surface by degrading collagen I, II,
and elastin [75,81].

Legumain, as the target of CYSC, CYS6, and CYSF, also participates in immune reg-
ulation. Like cathepsin S and L, legumain promotes the maturation of MHC class II
molecules and participates in the direct cleavage of antigens, thereby facilitating over-
all antigen presentation. Legumain can also activate Toll-like receptors, an upstream
receptor of the Toll-like receptor signaling pathway, which are key players in the innate
immune response [82].

Overall, cathepsins and legumain can trigger immune responses, and their dysregula-
tion often correlates with the pathogenesis of autoimmune diseases, including rheumatic
arthritis, systemic lupus, Sjogren’s syndrome, asthma, and psoriasis [75].

Since type 2 cystatins inhibit cathepsins and legumain, which in turn suppress inflam-
matory responses and immune cell activation, type 2 cystatins can be considered immune
modulators. Indeed, most of the type 2 cystatins are immunosuppressive due, at least in
part, to their ability to inhibit protease function. Type 2 cystatins play key roles in DC
maturation and neutralizing cytotoxic lymphocyte cytotoxicity. Additionally, some of them
can also act as ligands to activate anti-inflammatory pathways. The following subsections
will talk about this in detail for each member of type 2 cystatins.

3.1. Cystatin SN (CYS1)

CYS1 contributes to allergic responses and the pathogenesis of allergic respiratory
diseases. CYS1 and cystatin SA are highly expressed in the nasal epithelial surface of
patients who have chronic rhinosinusitis (CRS) with nasal polyps. Using proteomics,
researchers have discovered that the mucus of CRS patients contains high concentrations
of CYS1 [83,84]. CYS1 is related to the Th2 immune response—an inflammation-related
response that is highly associated with allergic responses and induced by IL-4. Currently,
CYS1 serves as a biomarker for the activated Th2 immune response, which is mainly
triggered by CD4+ T cells [85]. CST1 expression can be induced by IL-4 stimulation and
is positively correlated with the upregulation of the Th2 immune response markers IL-33
and TSLP in eosinophilic CRS cases [86]. In addition, recombinant human CYS1 induces
secretion of several Th2-related cytokines, including IL-5, IL-13, and IL-4, with an increase
in Th2 cell infiltration [83]. For this reason, CST1 is a well-accepted biomarker for CRS
diagnosis. Since CYS1 regulates the Th2 immune response, it is a good biomarker for
asthma and allergic rhinitis. CST1 is upregulated in epithelial cells of the upper and lower
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airways in patients with asthma and allergic rhinitis [87,88]. The upregulation of CST1 is
correlated with severe allergic respiratory disease [89,90]. Interestingly, allergic respiratory
diseases are treated with corticosteroids which downregulate CST1 expression in the airway
epithelial cells [87]. One study showed that CYS1 promotes the proliferation and migration
of airway smooth muscle cells by activating the PI3K/AKT signaling pathway in an in vitro
asthma model. This indicates that CYS1 participates in airway remodeling events and
maybe a main contributor to asthma development [91].

Because CYS1 promotes the secretion of IL-4 in the immune cells, CYS1 may introduce
an anti-inflammatory response in the microenvironment. Indeed, patients with CRS who
have high CST1 expression in their nasal epithelial cells also have high levels of CCL18.
CCL18 is an M2 macrophage polarizing cytokine that induces immunosuppression and anti-
inflammatory responses [92,93]. In addition, CST1 plays an important role in introducing
an anti-inflammatory response in acute liver failure (ALF) models [94]. CYS1 can directly
bind to IFNGR1/2, acting as a competitive inhibitor of the pro-inflammatory cytokine
IFN-γ. As a consequence, CYS1 inhibits the activation of the JAK/STAT1 pathway induced
by IFN-γ and promotes the M2 polarization of macrophages in the liver [94]. In summary,
CYS1 plays a role in the allergic Th2 immune response and anti-inflammatory processes.

3.2. Other SD-Type Cystatins (CST2, CST4, CST5)

In addition to CST1, clinical studies have shown that the other SD-type cystatins (CST2,
CST4, and CST5) also participate in immune response regulation. To date, the mechanism
behind their immune regulatory function is unknown. As a result, conclusions about their
function in immune regulation cannot be drawn.

Although CST1 is the preferred clinical biomarker for allergic respiratory diseases,
like asthma and CRS, CST2 can also be used as a clinical biomarker for allergic respiratory
diseases [95–97]. CST4 is used as an anti-inflammatory marker since it is downregulated in
rheumatic arthritis and Sjogren’s syndrome [98,99].

Unlike the other SD-type cystatins which are used as anti-inflammatory biomarkers,
CST5 is used as an inflammatory biomarker [100–102]. An in vitro experiment on the hu-
man MRC-5 diploid lung cell transfection model showed that CYSD inhibits the replication
of OC43 and 229e coronavirus strains at its physiological concentration, showing that CYSD
has an anti-viral function [103].

3.3. Cystatin C (CYSC)

CYSC has been shown to have anti-inflammatory properties. Immature DCs ex-
press high levels of CST3, and this upregulation gradually disappears during DC matura-
tion [104]. The expression of CYSC protein in immature DCs prevents the protease activity
of cathepsin S from activating the MHC class II molecules. Therefore, immature DCs are
less able to complete antigen presentation and a following immune response [105]. A
high level of CYSC positively correlates with the severity of several autoimmune diseases,
including sepsis and rheumatoid arthritis [106,107]. A high level of CYSC also correlates
with more severe HIV infections, which can be suppressed by antiviral treatment [108].

On the other hand, CYSC also shows pro-inflammatory activities. In hematopoietic
cells, CYSC is expressed at higher levels in macrophages and DCs than in T cells [44,109]. In
macrophages, CYSC modulates the immune response by enhancing macrophage responses
to IFN-γ. This consequently upregulates the activation of the NF-κB pathway and promotes
immune-related cytokine NO and TNF-α secretion [110]. CYSC expression can inhibit the
secretion of the anti-inflammatory cytokine IL-10 and it is an antagonist of TGF-β [111,112].
At the same time, IL-10 and TGF-β can also modulate the expression of CYSC via the
upregulation of its transcription factor IRF-8, forming a negative feedback loop [110,111].

3.4. Cystatin E/M (CYS6)

The immunomodulatory role of CYS6 has not been reported in the current literature.
However, some predictions can be made based on the current mechanistic studies of



Cancers 2023, 15, 5363 9 of 21

CYS6. CYS6 can inhibit the activation of NF-κB signaling by both canonical and non-
canonical pathways [113,114]. CYS6 can also be internalized by macrophages where it
highly suppresses osteoclast cathepsin K [114]. Given this evidence, CYS6 has the potential
for development as a therapeutic agent to alleviate rheumatic arthritis [75].

3.5. Cystatin F (CYSF)

CYSF is an important immune modulator that acts as a natural immunosuppressant
in the human body. High levels of CYSF in NK cells, T cells, and DC cells have been used
to counteract the activated immune response mediated by cathepsins. A high level of
CYSF reduces the cytotoxicity of CD8+ T cells and NK cells. The inhibition of cathepsin
C, L, and H in NK cells and CD8+ T cells suppresses the expression of the downstream
cytotoxic-related protein perforin and granzymes [115,116]. In contrast, CYSF co-localizes
with cathepsin S in immature DCs and weakens as the DCs mature [117]. The inhibition
of cathepsin S by CYSF in immature DCs likely suppresses antigen presentation induced
by the MHC class II molecules in DCs. Studies suggest that CYSF is associated with
inflammatory responses in the central nervous system induced by microglia, a type of cell
that is closely related to macrophages in the neural system [118,119].

In conclusion, besides CYSD and CYSC’s non-protease inhibitory function, the type 2
cystatins are all anti-inflammatory factors and are potential immunosuppressants.

4. The Role of Cathepsins, Legumain, and Type 2 Cystatins in Cancer Development

Type 2 cystatins are cysteine cathepsin inhibitors and this is also the reason why they
have immunosuppressive effects. Theoretically, type 2 cystatins should have pro-tumor
effects on cancer models as they are immunosuppressants. However, the situation is
complex because several cathepsins also play roles in tumorigenesis-enhancing cellular
events. The activity of cathepsin B, a ubiquitous cathepsin, is highly related to tumor
progression and various devastating immunosuppressive events. These events include
reduction in CD8+ T cell persistence, infiltration of immunosuppressive tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells
(Tregs) [75,120]. In addition, cathepsin B, L, S, and K participate in the cleavage and
degradation of the extracellular matrix (ECM). As a result, the activation of these cathepsins
facilitates the migration, invasion, and metastasis of tumor cells [121]. Cathepsins also have
a protective effect on tumor cells and are involved in the chemoresistance of cancer.

Legumain is largely expressed on TAMs and cancer cells from the breast, prostate, and
liver. The overexpression of legumain is highly correlated with tumor migration, invasion,
poor prognosis, and inferior survival. Legumain can activate MMP-2&9, PI3K/AKT, and
integrin signaling pathways to promote epithelial-mesenchymal transition (EMT) and the
TGF-β signaling pathway. Additionally, it also cleaves and inactivates the tumor suppressor
protein p53 [122].

Since type 2 cystatins inhibit both protease-induced inflammatory responses and
pro-tumor activity, they exhibit a complex dual effect on tumorigenesis. In the following
subsections, the role of each type 2 cystatin in cancer development is discussed.

4.1. Cystatin SN (CYS1)

CST1 is a pro-tumor gene in multiple cancer models, including esophageal, breast,
colon, gastric, liver, and lung cancer [123–128]. In lung cancer, CST1 is hypomethy-
lated [129], resulting in upregulation of CST1. This upregulation is often correlated with
poor prognosis, metastasis, and recurrence [124,125,127,128]. Compared to CYSC, CYS1 is
a weaker inhibitor but it displays a higher affinity for cathepsin B, which is known to be
involved in tumor progression. Therefore, overexpression of CYS1 can partially neutralize
the inhibitory effect of CYSC on cathepsin B, inducing stronger tumor invasiveness medi-
ated by enhanced cathepsin B activity [130]. In addition to its ability to neutralize CYSC,
CYS1 also upregulates AKT phosphorylation and activates the PI3K/AKT pathway. This
subsequently downregulates E-cadherin and facilitates EMT, promoting tumor metasta-
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sis [128]. CYS1 directly interacts with the ferroptosis mediator GPX4 by interfering with
the ubiquitination of GPX4 and stabilizing it, thus inhibiting tumor cell ferroptosis. This
consequently promotes tumor progression and metastasis in gastric cancer models [123].

4.2. Other SD-Type Cystatins (CST2, CST4, CST5)

Since SD-type cystatins share a highly similar amino acid sequence and protein struc-
ture, it is not surprising that CYS2 and CYSS exhibit pro-tumor functions. However, studies
on these cystatins are limited, which makes it difficult to conclude whether they have
the same pro-tumor mechanism as CYS1. Upregulation of CST2 correlates with tumor
metastasis of prostate and gastric cancer [131,132]. CYS2 may help regulate the TGF-β
signaling pathway and promote EMT like CYS1, but the mechanism needs further explo-
ration to be certain [131]. CST4 is upregulated in esophageal, colon, and gastric cancer
and is associated with poor prognosis [133–135]. The overexpression of CYSS in gastric
tumor cells upregulates a protein called ELFN2, which directly inhibits the expression of
E-cadherin and promotes EMT, like CYS1 and CYS2 [134]. However, there are very few
studies on ELFN2 and its connection with tumor invasiveness. Thus, future studies are
needed to determine how CYSS promotes tumor growth.

In contrast, based on biomarker studies of colon, gastric, and prostate cancer, CST5
is considered an antitumor gene [136–138]. CST5 expression is induced by vitamin D,
which is known to have antitumor activity and is downregulated in human colon cancer
cells [139–141]. CYSD inhibits the Wnt/β-catenin signaling pathway and oncogenic c-MYC
expression, which consequently extends the cell cycle and reduces the proliferation, mi-
gration, and invasiveness of colorectal tumor cells [139]. Importantly, some studies have
suggested that CST5 is a downstream target of p53 [142]. The p53 protein enhances CST5
expression by interacting with the CST5 promoter region and simultaneously downreg-
ulating EMT-promoting transcription factor SNAIL, which in turn downregulates CST5
expression [142].

4.3. Cystatin C (CYSC)

CYSC has a dual effect on cancer development. It was observed to have an anti-
tumor function on several cancer types, including pancreatic cancer, breast cancer, and
leukemia [143–146]. Currently, there are at least two mechanisms that can explain the
antitumor function of CYSC. First, the antitumor effect of CYSC is highly related to its
strong inhibitory effect on cathepsin B. Compared with other type 2 cystatins, CYSC is
the strongest inhibitor of cathepsin B [147]. Because CYSC inhibits cathepsin B, CYSC acts
as a suppressor of cell migration, thereby inhibiting tumor invasion and metastasis [148].
CYSC is also an inhibitor of the TGF-β pathway. CYSC directly interacts with TGF-β
receptor 2 and competes with the binding of the TGF-β ligand. By inhibiting the TGF- β
signaling pathway, CYSC inhibits multiple metastatic events in tumor cells, such as loss of
cell contacts, downregulation of cell polarization, and increased cell migration [149].

In contrast, there are also several studies stating that a high CYSC level correlates with
a worse prognosis. High levels of CYSC were found in tumor tissue of ovary, colon, and
esophageal cancer [150–152]. Cathepsin B has been found to promote apoptosis and this
could be linked to the observed phenomenon that CYSC suppresses apoptosis of tumor
cells [153,154]. However, the mechanism by which CYSC promotes tumor progression is
unknown. CYSC can be used as a biomarker for cancer prognosis. However, recent studies
suggest that renal function, which is frequently altered in cancer, heavily influences the
levels of serum CYSC and intercellular CYSC [155,156]. This could negatively impact the
use of CYSC as an effective biomarker for cancer prognosis.

4.4. Cystatin E/M (CYS6)

CYS6 has been found to have dual effects, exhibiting pro-tumor properties in some
cancers and anti-tumor properties in others. CST6 is an antitumor gene that is hypermethy-
lated in breast, prostate, brain, and cervical cancer [113,157–159]. The antitumor effect of



Cancers 2023, 15, 5363 11 of 21

CST6 has been mostly studied in breast cancer models and its downregulation correlates
with higher levels of migration and invasiveness in both in vivo and in vitro models of
breast cancer [157]. The epigenetic silencing of CST6 is strongly correlated to breast cancer
bone metastasis [157]. CYS6 also inhibits the pro-oncogenic function of legumain [160,161].
In addition, CYS6 inhibits cathepsin B, which is frequently upregulated in breast can-
cer [162]. Cathepsin B cleaves SPHK1, an enzyme that inhibits osteoclast differentiation by
inhibiting p38 activation induced by RANKL [162]. Uncontrolled osteoclast differentiation
disrupts bone homeostasis, causes bone disease, and promotes cancer bone metastasis [163].
Furthermore, CYS6 inhibits cathepsin K, an enzyme that is predominantly expressed in
osteoclasts and participates in bone matrix remodeling [114]. Therefore, CYS6 suppresses
bone metastasis of tumor cells by inhibiting osteoclastogenesis. CYS6 also inhibits NF-κB
signaling in both canonical and non-canonical pathways [113,114].

In contrast, CST6 has also been found to have pro-tumor functions in pancreatic,
liver, gastric, and triple-negative breast cancer [164–167]. Additionally, a small fraction
of patients with multiple myeloma express high levels of CST6 [114]. A recent paper has
identified CST6 as a factor involved in the dysregulation of necroptosis in gastric tumor
cells, resulting in a poor prognosis for patients with gastric cancer [167]. Compared to our
understanding of the antitumor effects of CYS6, the mechanism by which CYS6 promotes
tumor growth is poorly understood.

4.5. Cystatin F (CYSF)

Although there are extensive reports on the immunoregulatory function of CYSF,
the role of CYSF in cancer is unclear. Given the immunosuppressive function of CYSF,
uncontrolled upregulation of CST7 likely enhances tumor progression. Indeed, high levels
of CST7 are associated with poor prognosis and lower survival rates in patients with liver,
oral, and brain cancer [116,168,169]. The current literature has shown that the pro-tumor
effects of CYSF are highly correlated to its immunosuppressive function. Upregulation
of CST7 causes a decrease in the cytotoxicity of NK cells to tumor cells [168]. In contrast,
multiple studies suggest that CST7 downregulation is associated with higher invasiveness
of tumors, more metastatic events, and tumor progression in prostate cancer, lung cancer,
pancreatic cancer, and lymphoma [170–173]. Since CST7 downregulation is correlated with
metastasis and tumor progression, this indicates that CST7, like other type 2 cystatin family
members, regulates the cathepsin B-L metastatic axis. However, further studies are needed
to draw definitive conclusions on the role of CST7 in cancer progression.

5. Type 2 Cystatin Studies on Mouse Model: A Brief Overview

Although type 2 cystatins play important roles in human immune responses and
tumor progression, it is important to choose a good animal model for cystatin in vivo
studies. Fortunately, the sequence homology and function of many type 2 cystatins are
highly conserved in mice. CST3, CST5, CST6, and CST7 are highly conserved in mice, with
very close similarities in their protein sequences compared to humans (Figure S2) [174].
According to the current literature, mouse models, especially the C57/BL strain (the gene
of interest could be manipulated) are frequently used in Cst3, Cst6, and Cst7 studies and the
results harmonize with the clinical data obtained in humans [162,175,176]. Although mice
lack matched genes for CST1, CST2, and CST4, studies show that human recombinant CYS1
and CYS2, which are the matched proteins of CST1 and CST2, are also functional in mouse
models and their findings align with clinical data obtained from humans [83,123]. These
studies provide evidence that the function of many type 2 cystatins is also highly conserved
in mouse models and can serve to uncover their unique functions at the immune-oncology
axis.

6. Conclusions

Type 2 cystatins are the natural inhibitors for a group of proteases called cysteine
cathepsins. Since their discovery, type 2 cystatins have emerged as valuable biomarkers for
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various autoimmune-related diseases and cancer. These small secreted protease inhibitors
suppress proteolytic activities that are necessary for immune cell development and po-
larization, protein maturation, and cytotoxicity exertion. Therefore, type 2 cystatins are
potential immunosuppressants. Secondly, they inhibit the proteolytic activity necessary
to promote tumor metastasis, such as ECM degradation and EMT. Finally, the regulatory
role of type 2 cystatins extends beyond protease inhibition, since they can interact with
receptors involved in crucial immune-oncogenic pathways (Figure 3 and Table 2). This
suggests the presence of additional structural regions within type 2 cystatins that may
function as ligands for these receptors. There are conserved regions in type 2 cystatins
with unknown functions, and these regions may play a role in ligand-receptor interactions
(Figures 2 and S1). Thus, it might be worthwhile to re-evaluate the structure of type 2
cystatins, as it potentially provides insights into their non-protease inhibitory functions.
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Table 2. Summary of type 2 cystatins on their inflammation and tumor progression regulatory
functions.

Name of Protein Anti-Inflammatory Effect
Pro-Tumor Effect

Pro-Inflammatory Effect
Anti-Tumor Effect

CYS1

• Promotes Th2 inflammatory response [85]
• Promotes M2 macrophage polarization [93]
• Inhibits JAK/STAT1 pathway [94]
• Inhibit tumor cell ferroptosis [123]
• Activates PI3K/AKT pathway [128]
• Partially neutralizes CYSC’s strong cathepsin

B inhibitory effect [130]

• Uncertain

CYS2

• Uncertain
• May regulate the TGF-β signaling

pathway [131]
• Uncertain

CYSC
• Suppresses MHC class II molecule

maturation in immature DCs [105]
• Stronger inhibitor of pro-tumor cathepsin B [147]
• Inhibits TGF- β pathway [149]

CYSS
• Uncertain
• May promote EMT [134]

• Uncertain

CYSD
• Uncertain • Inhibits Wnt/β-catenin signaling pathway [139]

• Inhibits c-MYC expression [139]

CYS6

• Suppress osteoclast differentiation and
alleviate bone-matrix inflammatory
stress [114]

• Stronger inhibitor of pro-tumor
legumain [160,161]

• Inhibits p38 activation induced by RANKL [162]
• Inhibits NF-κB signaling pathway [113,114]
• Suppresses osteoclast differentiation and

prevents bone metastasis [114]

CYSF
• Reduces NK cell and CD8+ T cell

cytotoxicity [115,116]
• Regulates DC maturation [117]

• Uncertain
• May be related to cathepsin B-L metastatic

axis regulation

Despite the frequent use of type 2 cystatins as biomarkers, few studies have investi-
gated the mechanisms underlying their immune regulatory functions and their pro-tumor
and antitumor effects on tumor development. Given the immense potential of type 2 cys-
tatins as novel immunosuppressants, anticancer agents, and targets for cancer therapeutics,
future studies should investigate the molecular and cellular mechanisms of type 2 cystatins.
Such investigations should not only focus on their protease inhibitory function but also
delve into the characteristics that go beyond protease inhibition.
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//www.mdpi.com/article/10.3390/cancers15225363/s1, Figure S1: The sequence alignment of type
2 cystatin family. The sequence of each cystatin was retrieved from the NCBI GenPept database.
Multiple sequence alignment was performed by Clustal Omega and Boxshade. The G-QXVXG-VPW
fragment is highlighted in the red box and post-helix N is highlighted in the blue box; Figure S2: The
sequence alignment of human and mouse cystatin C, D, E/M, and F. The sequence of each cystatin
was retrieved from the NCBI GenPept database. The sequence alignment was performed by Clustal
Omega and Boxshade. The G-QXVXG-VPW fragment is highlighted in the red box and post-helix N
is highlighted in the blue box.
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