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ABSTRACT 
 
The method based on the description of the probabilities of states using a non-stationary Poisson 
flow allows using elementary reasoning to find not only a stationary, but also a non-stationary 
distribution of the number of requirements in the system. 
To find a stationary distribution of the number of requirements in queuing systems (QS), the method 
of introducing additional variables leading to a piecewise linear Markov process is used. 
The fact of invariance is shown: the stationary probabilities of pi states in queuing systems (QS) 
M/G/n/0 depend only on the average service time of the requirement and do not depend on the type 
of distribution G(x). 
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1. INTRODUCTION  
 
In an infinitely linear queuing system (QS) of the 
M/G/∞ type, every requirement that enters the 
system immediately begins to be serviced [1]. 
The intensity of the incoming flow is denoted by 
λ. Let the service time of each requirement be 
distributed according to an arbitrary law G(x). 
 
There are various ways to study the M/G/∞ 
system. Let us consider a method based on the 
description of the probabilities of states using a 
non-stationary Poisson flow. The method allows 
using elementary reasoning to find not only 
stationary, but also non-stationary distribution of 
the number of requirements in the system. 
 
For simplicity, we assume that at the initial 
moment 0 the system is free. 
 
Consider on the interval (0, t) the flow of 
requirements that have not been serviced by the 
time t, the current time is denoted by u. This is a 
flow with no aftereffect, because due to the 
Poisson nature of the initial flow and the 
independence of the service times of the 
requirements from each other and the incoming 
flow, it follows that the numbers of unserved 
requirements received at the time t on disjoint 
segments of the time interval (0, t) are 
independent random variables. 
 
Further, the flow is ordinary, since the probability 
of receipt at the interval Δ of more than one 
requirement that has not been serviced by the 
time t does not exceed the probability of receipt 
at this interval of more than one requirement and, 
therefore, has the order 0 (Δ). 
 
However, the flow is not stationary, since the 
distribution of the number of requests received at 
the same length of time intervals, will depend on 
where this interval is located: the further the 
interval is from the moment t, the fewer 
requirements received on it will remain in the 
system by the moment t. 
 
This means that the flow of unserved 
requirements by the time t will be non-stationary 
Poisson with time-dependent and intensity λ(u). 
The intensity λ(u) is easy to calculate: to do this, 
simply multiply the intensity of the initial flow λ by 
the probability 1 – G(t – u) that the requirement 
will not be serviced during t – u, i.e. 

λ(u) = λ(1 – G(t – u)). 
 

Finally, we obtain: the number of requirements in 
the system M/G/∞ at time t is the number of 
requirements received in the interval (0, t) of a 
non-stationary Poisson intensity flow 
 

λ(u) = λ(1 – G(t – u)). 
 

It follows from this that the number of 
requirements in the system at time t is distributed 
according to Poisson's law with the parameter 
 

( ) ( )( ) ( )( )
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and the probabilities pi(t) that there are i 
requirements in the system at the moment t have 
the form 
 

( )
( )( ) ( )

!

i

t

i

t
p t e

i

−


=
.                           

(2)

 
 

In order to obtain a stationary distribution of the 
number of requirements in the system M/G/∞, it 
is enough to aim t to infinity in formulas (1) and 
(2). If the average service time 
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of course, that 
( )t M →

 at t →  This 
means that the stationary distribution of the 
number of requirements in the system in this 
case will be Poisson with the parameter λM. 
 

If M = ∞, then over time the number of 
requirements in the system will tend to infinity on 
average. 

 
A multilinear CFR with M/G/n/0 losses is 
sometimes called an Erlang system. It is 
assumed that the flow entering the system has 
intensity λ, and the service time of each 
requirement is distributed according to an 
arbitrary law G(x). The Erlang system also 
belongs to the number of non-Markov systems, 
its functioning cannot be described by a Markov 
process with continuous time and a discrete set 
of states. 
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To find a stationary distribution of the number of 
requirements in the system, we apply the method 
of introducing additional variables leading to a 
piecewise linear Markov process. Such variables, 

along with the number v(t) of requirements in the 
system at time t, can serve, for example, the 
residual service times of the requirements that 
are on the devices at time t. 

 
Let 's put 
 

( ) ( ) ( ) ( ) 1 1 1,..., ; , ,...,i i i iP x x t P t i t x t x=  =    
. 

 
It can be shown that, given the finiteness of the average service time of the requirement 

( )
0

M xdG x



= 
 there is a stationary distribution 

 

( ) ( )1 1,..., lim ,..., ;i i i i
t

P x x P x x t
→

=
, 

 
has a density 
 

( ) ( ) ( )1 1 1,..., ,...,i

i i i i ip x x P x x x x=   
. 

 
For simplicity, assume that the distribution function G(x) of the service time also has a density 

( ) ( )g x G x=
. 

 
For this case, consider all possible transitions from the state [1,2] 
 

( ) ( ) ( ) 1 1, ,..., i it i t x t x =  =  =
 

 
for a "small" time Δ. During this time, the remaining service times of all requirements will decrease by 
Δ, with a probability of λΔ + o(Δ), a request may arrive and with a probability of 
 

( ) ( ) ( )1 1 1 1 1 1,..., , , ,.., ,..., ,0, ,..,k k i k k iP x x x x p x x x x o− + − + =  + 
 

the service of the k requirement, which had a residual service time of less  may end. 
 
In turn, the incoming request to the system has a service time enclosed in the interval (y, y + δ) with 
probability g(y)δ + 0(δ). Since the stationary mode is considered, the distributions of the piecewise 

linear process 
( ) ( ) ( ) ( )( )1, ,...,

t
t t t


  

 at moments t and t + Δ coincide and have a distribution 

density  
( )1,...,i ip x x

. 
 
We believe that the received request can with equal probability occupy any free channel by number. 

Considering the above, we obtain for 
( )1,...,i ip x x

 when i > 0 and i < n the equation [3,4,5] 
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The equation for the stationary probability p0 of the absence of requirements in the system has the 
form [6,7,8]: 
 

( ) ( ) ( )0 0 11 0p p p o= − +  + 
. 

 
Finally, if there are n requirements in the system, then the n requirements received in the system is 
lost. This remark allows us to write out the equation: 
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Transferring 
( )1, ,..,o i ip p x x+  + 

 and 
( )1 ,..,n np x x+  + 

 to the left parts of the 
corresponding equations, dividing by Δ and aiming Δ to zero, we get [4,9,10]: 
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 (3) 
 
By direct verification, it is not difficult to verify that the functions 
 

( ) ( )( ) ( )( )1 1,..., 1 1
!

i

i i ip x x G x G x
i


= − −

 
are the solution of system (3), i.e. the densities of the stationary distribution of the process 
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The stationary probability pi of the presence of exactly i requirements in the system is given by the 
formula [11,12,13] 
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where po is determined from the normalization condition po + ... + pn = 1, i.e. 
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A particularly important role in practical 
calculations is played by the stationary 
probability of   P, which coincides with the 
stationary probability pn that all channels are 
occupied. 

 
It is easy to see that the stationary probabilities pi 
for the M/G/n/0 system are determined by the 
same expressions as the stationary probabilities 
pi for the M/M/n/0 system with the exponential 
distribution parameter of the service time 

1 M =
. 

 
Thus, it can be argued about the fact of 
invariance: the stationary probabilities of the 
states of pi in the CFR M/G/n/0 depend only on 
the average service time of the requirement and 
do not depend on the type of distribution G(x) 
[14,15,16,17,18]. 
 

2. CONCLUSION 
 
1. A particularly important role in practical 
calculations is played by the stationary 
probability of   P, which coincides with the 
stationary probability pn that all channels are 
occupied. 
 
2. Stationary probabilities pi for the M/G/n/0 
system are determined by the same expressions 
as the stationary probabilities pi for the M/M/n/0 
system with the exponential distribution 

parameter of the service time 
1 M =

. 
 
3. It can be argued about the fact of invariance: 
the stationary probabilities of the states of pi in 
the CFR M/G/n/0 depend only on the average 
service time of the requirement and do not 
depend on the type of distribution G(x). 
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