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1. Introduction

T he numerical study of the piezoelectric [1,2] contact problems [3–7] presents a great challenges, because
the non coercivity and non differentiability of some terms. The linear term coupling the mechanical

field and electric potential is non coercive and non symmetric. The term corresponding to the friction is
convex and non differentiable, in the variational formulation in one hand. In the other hand, the non-linear
coupling mechanical field and frictional contact, it can be shown in the norm of the tangential component of
the mechanical field present in the frictional function.

To overcome these difficulties, the authors develop some methods like finite elements method [8,9],
penalty method and fixed point method [4]. The most and sufficient method for this type of problem is the
ones based on convex duality [10] and the introduction of Lagrange multipliers [11–13]. Primal-dual active sets
strategy, which is an equivalent to infinite dimensional semismooth Newton method, is applied in [14] while
in [15] the author propose a numerical approximation and based Uzawa block relaxation method. Alternating
directions method of multipliers (ADMM) is based in [16].

In mechanic of structures one is always interested in the determination of the stress tensor σ more than the
mechanical displacement itself. Methods have been developed for calculate an approximation of σ from u and
the drawback is not easy to build an approximation space of tensors satisfying the equilibrium relations and
required regularity. A mixed variational formulation have been developed to handle this difficulty. Concerning
the piezoelectric contact problems, mixed formulation were developed in [17–19].

In this paper, we introduce a mixed variational approach based Lagrange multipliers which describes
the static frictional contact between a piezoelectric body and non-conductive foundation. The standard mixed
variational formulation of contact problems is formally in the following form [17,18,20]:{

a(u, v) + b(v, λ) = ( f , v), ∀ v ∈ V,

b(u, δ− λ) ≤ 0, ∀ δ ∈ Λ,
(1)

where a(·, ·) is symmetric, coercive and the term b(·, ·) coupling the normal and tangential Lagrange
multipliers. This coupling is difficult to handle numerically and for model describing the contact problem with
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friction it is important to use the decoupling form to identify the slid and slip on the contact zone. Moreover,
when the model (1) describe problem with electroelastic body the bi-linear form a(·, ·) become not symmetric.

The idea consists in decoupling the contact from the friction by introducing two convex sets, one is
reserved to the contact multiplier and the second is stated for the friction. This approach leads to decoupled
inequalities in mixed variational problem. Since a(·, ·) is not symmetric we follow the standards techniques
and steps based on [17,18] but with different fixed point map (Step 3 in the proof) and hence more analysis
is needed to get the existence and uniqueness result. The resulting problem is an system by blocks of
two unknowns (displacement and potential), regarding its structure and the form of blocks we use Gauss
elimination technique and then we obtain a Schur complement in the matrix corresponding to displacement
subproblem. It is well known (see [16,21]) that this technique allows a suitable preconditioner for conjugate
gradient method employed to solve the resulting symmetric and positive definite system.

To prove the efficiency of this approach, we state suitable numerical fixed point scheme. The convergence
is proved basing abstract perturbed problem and fixed point process, Banach fixed point is hence applied. For
details concerning the mathematical tools we refer to [22–25].

The paper is structured as: In Section 2, we present the model of equilibrium process of the elastic
piezoelectric body in frictional contact with a non-conductive foundation,we introduce the functional spaces
for various quantities, list the assumptions on given data and derive the weak formulation of the problem.
In Section, 2.2 we state and prove our main existence and uniqueness result, Theorem 1. The proof of these
theorem are carried out in several steps and are based on an abstract result in the study of elliptic variational
inequalities and Banach fixed point technique. The successive iterative method is detailed followed by the
convergence result in Section 4. In Section 5, we conclude with finite element discretization and we give some
numerical experiments by simple example .

2. Problem setting and main results

2.1. Problem setting

The piezoelectric body occupies in its reference configuration (initial configuration) the domain Ω ⊂ Rd,
d = 2, 3. We suppose that Ω is bounded with a smooth (enough) boundary ∂Ω = Γ. We denote by n be
the outer normal to Γ and summation over repeated indices is implied and the index that follows a comma
represents the partial derivative with respect to the corresponding component of the variable. The indices take
values in {1, · · · , d} the summation convention over repeated indices is used.

Below we use Sd to denote the space of second order symmetric tensors on Rd while "." and ‖ · ‖ will
denote the inner product and the Euclidean norm on Sd and Rd, that is

u.v = uivi, ‖v‖ = (v.v)
1
2 , ∀ u, v ∈ Rd,

σ.τ = σijτij, ‖τ‖ = (τ.τ)
1
2 , ∀ σ, τ ∈ Sd.

We also use the notations un and uτ for the normal and tangential displacement, that is un = u.n and
uτ = u− unn. Similarly we denote by σn and στ the normal and tangential stress tensor given by σn = σn.n,
στ = σn− σnn.
We introduce the following functional spaces on Ω;

H = L2(Ω)d =
{

u = (ui) | ui ∈ L2(Ω)
}

, H =
{

σ = σij, σij = σji ∈ L2(Ω)
}

,

H1 = {u ∈ H | ε(u) ∈ H} , H1 = {σ ∈ H | Div σ ∈ H}

endowed with the inner products

(u, v)H =
∫

Ω
uividx, (σ, τ)H =

∫
Ω

σijτijdx.

(u, v)H1 = (u, v)H + (ε(u), ε(v))H, (σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H .
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The associated norms on the spaces H, H, H1 and H1 are denoted by ‖.‖H , ‖.‖H, ‖.‖H1 and ‖.‖H1

respectively.
We recall the well known Green’s formula

(σ, ε(v))H + (Div σ, v)H =
∫

Γ
σn.v da ∀ v ∈ H1,

where Div σ = (σij,j) and for more details of this formula see [24].
In addition we shall use the following notations. u is the displacement field , ε(u) = (εij(u)) to denote

the strain tensor, given by εij(u) = 1
2 (ui,j + uj,i) and σ = (σij) being the stress tensor. Lets ϕ denote the electric

potential, E(ϕ) = (Ei(ϕ)) is the electric field, which is defined by Ei(ϕ) = −ϕ,i and D = (Di) is the electric
displacement field.

The equilibrium equations are given by

− Div(σ) = f0 in Ω, (2)

div(D) = q0 in Ω, (3)

where the constitutive relations for the piezoelectric material are:

σ = Aε(u)−B∗E(ϕ) in Ω, (4)

D = Bε(u) + βE(ϕ) in Ω, (5)

where A = (aijkl) is a (fourth-order) elasticity tensor, B = (bijk) is the (third-order) piezoelectric tensor, B∗ is
the transpose of B and β = (βij) is the electric permitivity and div(D) = Di,i (see [26]).

To give the mechanical and electrical boundary conditions, we subdivide Γ into three disjoints measurable
parts Γ1, Γ2, Γ3 such that meas(Γ1) > 0. The body is assumed to be clamped on Γ1 and surfaces traction of
density f2 act on Γ2, on Γ3 the body can reaches a frictional contact with the so called foundation (insulating
foundation). A second partition of Γ, that is Γ = Γ3 ∪ Γa ∪ Γb. Surface electric charge of density q2 acts on Γb ,
and the electric potential vanishes on Γb. We use the same symbol v for the trace of v on Γ.

u = 0 on Γ1. (6)

σn = f2 on Γ2 (7)

ϕ = 0 on Γa. (8)

D.n = q2 on Γb. (9)

The contact and the Coulomb friction conditions:

un − g ≤ 0, σn ≤ 0 and σn(un − g) = 0 on Γ3, (10) If uτ = 0 then ‖στ(u)‖ ≤ −Fσn(u) on Γ3,

If uτ 6= 0 then στ(u) = Fσn(u)
uτ

‖uτ‖
on Γ3, (11)

where F is the friction coefficient and g is the gap between the body and the rigid foundation.
The electric contact condition is;

D.n = 0 on Γ3. (12)

To resume, we consider the following problem:

Problem 1. Find the displacement field u : Ω −→ Rd and the electric potential field ϕ : Ω −→ R such that
(2)-(12) hold.

To study of Problem 1 we will assume, under Einstein summation convention, that:
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
(a) A = (Aijsl) : Ω× Sd −→ Sd,
(b) Aijsl = Aijls = Alsij ∈ L∞(Ω),
(c) ∃mA > 0 such that: Aijslεijε ls ≥ mA|ε|2, ε ∈ Sd, a.e. on Ω,

(13)

{
(a) B = (Bijk) : Ω× Sd −→ Rd,
(b) Bijk = Bikj ∈ L∞(Ω),

(14)


(a) β = (βij) : Ω×Rd −→ Rd,
(b) βij = β ji ∈ L∞(Ω),
(c) ∃mβ > 0 such that: βijEiEj ≥ mβ|E|2, E ∈ Rd, a.e. on Ω,

(15)

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)
d, (16)

q0 ∈ L2(Ω), q2 ∈ L2(Γb). (17)

Let us introduce the following Hilbert spaces:

V =
{

v ∈ [H1(Ω)]d/v = 0 on Γ1

}
,

W =
{

ϕ ∈ H1(Ω)/ϕ = 0 on Γa

}
,

K =
{

v ∈ [H
1
2 (Γ3)]

d/vn ≤ g on Γ3

}
.

If u and ϕ are regular functions which satisfy (2)-(10), then we find:∫
Ω
Aε(u)ε(v)dx +

∫
Ω
B∗∇ϕε(v)dx =

∫
Ω

f0vdx +
∫

Γ2

f2vdΓ +
∫

Γ3

(σn).vdΓ

−
∫

Ω
Bε(u)∇ψdx +

∫
Ω

β∇ϕ∇ψdx =
∫

Ω
q0ψdx−

∫
Γb

q2ψdΓ.

Let us introduce the functional space Ṽ = V ×W, which is the Hilbert space endowed with the inner
product:
(ũ, ṽ)Ṽ = (u, v)V + (ϕ, ψ)W where ũ = (u, ϕ), ṽ = (v, ψ) ∈ Ṽ. Let a : Ṽ × Ṽ −→ R be the bi-linear form given
by:

a(ũ, ṽ) =
∫

Ω
Aε(u)ε(v)dx +

∫
Ω
B∗∇ϕε(v)dx−

∫
Ω
Bε(u)∇ψdx +

∫
Ω

β∇ϕ∇ψdx.

Moreover, by Riesz’s representation theorem, we define f̃ ∈ Ṽ by:

( f̃ , ṽ)Ṽ :=
∫

Ω
f0vdx +

∫
Γ2

f2vdΓ +
∫

Ω
q0ψdx−

∫
Γb

q2ψdΓ.

Using the previous tools, we find:

a(ũ, ṽ) = ( f̃ , ṽ)Ṽ +
∫

Γ3

(σn).vdΓ.

Since (σn).v = στvτ + σnvn, then:

a(ũ, ṽ) = ( f̃ , ṽ)Ṽ +
∫

Γ3

στvτ + σnvndΓ.

Let H∗Γ be the dual space of the space HΓ = [H
1
2 (Γ3)]

d and let us define

MT(λ) =

{
δ ∈ H∗Γ , 〈δ, vτ〉H∗Γ ,HΓ

≤
∫

Γ3

λ|vτ |dΓ, vτ ∈ HΓ

}
, (18)

MN =
{

δ ∈ H∗Γ , 〈δ, v〉Γ3
≤ 0, v ∈ Kn

}
, (19)
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where 〈·, ·〉H∗Γ ,HΓ
denotes the duality product between H∗Γ and HΓ, Kn the set of the normal component of

admissible displacement, i.e. Kn = {vn, vn ≤ g} .
It is straightforward that MT,N are two closed convex sets of H∗Γ and 0H∗Γ

∈ MN,T . We introduce two dual
Lagrange multipliers λN and λT ∈ M as follows:

〈λN , v〉Γ3
:= −

∫
Γ3

σnvndΓ, v ∈ V, and 〈λT , v〉Γ3
:= −

∫
Γ3

στvτdΓ, v ∈ V.

We define two bi-linear and continuous forms b1 and b2 for all v ∈ V, δ1, δ2 ∈ H∗Γ as follows:

b1 : Ṽ × H∗Γ −→ R, b1(ṽ, δ1) := 〈δ1, v〉Γ3
,

b2 : Ṽ × H∗Γ −→ R, b2(ṽ, δ2) := 〈δ2, v〉Γ3
.

We see that b1(ũ, λN) = −
∫

Γ3

σnundΓ, and by definition of MN we have:

b1(ũ, δ1 − λN) ≤ 0, ∀ δ1 ∈ MN .

Also, taking into account the definition of MT , λT , and the assumption (10), we have:

b2(ũ, λT) = 〈λT , u〉Γ3
= −

∫
Γ3

στuτdΓ.

Keeping in mind that the Sobolev trace operator is linear and continuous, it is clear that there exists
Mbi

> 0 such that:
|bi(ṽ, δi)| ≤ Mbi

||ṽ||Ṽ ||δi||H∗Γ , i = 1, 2. (20)

In addition, using the properties of the Sobolev trace operator it can be shown that there exists αi > 0
such that:

inf
δi∈H∗Γ\{0}

sup
ṽ 6=0

bi(ṽ, δi)

‖ṽ‖Ṽ‖δi‖H∗Γ
≥ αi, i = 1, 2. (21)

The following weak formulation of Problem 1 is then obtained :

Problem 2. (Weak formulation of Problem Problem 1) Find ũ ∈ Ṽ and λ = (λN , λT) ∈ MN ×MT(FλN) such
that:

a(ũ, ṽ) + b1(ṽ, λN) + b2(ṽ, λT) = ( f̃ , ṽ)Ṽ , ∀ ṽ ∈ Ṽ, (22)

b1(ũ, δ1 − λN) ≤ 0, ∀ δ1 ∈ MN , (23)

b2(ũ, δ2 − λT) ≤ 0, ∀ δ2 ∈ MT(FλN). (24)

2.2. Main results

In this section we present our main results.

Theorem 1. Assume (13)-(17), then the Problem 2 has unique solution (ũ, λ) ∈ Ṽ × M. Moreover if (ũ1, λ) and
(ũ2, β) are two solutions of Problem 2 for given data f̃1 and f̃2 respectively, then

||ũ1 − ũ2||Ṽ + ||λ− β||H∗Γ×H∗Γ
≤ C(|| f̃1 − f̃2||).

We denote b1(v, δ1) + b2(v, δ2) = 〈δ1, v〉Γ3
+ 〈δ2, v〉Γ3

= 〈δ1 + δ2, v〉Γ3
, hence there exists α > 0 such that

inf
δ∈H∗Γ\{0}

sup
v 6=0

b(v, δ)

||v||V ||δ||H∗Γ
≥ α. (25)

where b(·, ·) = b1(·, ·) + b2(·, ·) : Ṽ × MN × MT −→ R. Now we introduce a numerical scheme to get
numerically the solution of the Problem 2. The scheme is an fixed point iterative and is stated in the following
Algorithm 1.



Open J. Math. Anal. 2020, 4(1), 20-37 25

Algorithm 1 Decomposition method for Problem 2

Initialization: λ`
N and λ`

T
Iteration: ` ≥ 1. Compute successively ũ`+1, λ`+1

N and λ`+1
T using Algorithm

Step 1: Find ũ`+1 ∈ Ṽ such that

a
(

ũ`+1, ṽ
)
+ b1

(
ṽ, λ`

N

)
+ b2

(
ṽ, λ`

T

)
=
(

f̃ , ṽ
)

Ṽ , ∀ ṽ ∈ Ṽ. (26)

Step 2: Find λ`+1
N ∈ MN such that

b1

(
ũ`+1, δ− λ`+1

N

)
≤ 0, ∀ δ ∈ MN . (27)

Step 3: Find λ`+1
T ∈ MT(µλ`+1

N ) such that

b2

(
ũ`+1, δ− λ`+1

T

)
≤ 0, ∀ δ ∈ MT(Fλ`+1

N ). (28)

Proposition 1. Let (u`, λ`) be the solution generated by the Algorithm 1, then

||u` − u||Ṽ + ‖λ` − λ‖H∗Γ×H∗Γ
−→ 0, as ` −→ +∞. (29)

The proof of the main results will be presented in the next section.

3. Proof of the main result

Let X and Y two Hilbert spaces endowed with the inner product (·, ·)X and (·, ·)Y respectively and let us
consider two bi-linear forms as follows:
a(·, ·) : X× X −→ R, generally non symmetric, such that

∃ Ma > 0 such that |a(u, v)| ≤ Ma||u||X ||v||X , ∀ u, v ∈ X, (30)

∃ ma > 0 such that a(v, v) ≥ ma||v||2X , ∀ v ∈ X, (31)

and b(·, ·) : X×Y×Y −→ R, b(v, λ) = b1(v, λN) + b2(v, λT) such that

∃ Mb > 0 such that |b(v, δ)| ≤ Mb||v||X ||δ||Y×Y, ∀ (v, δ) ∈ X×Y×Y, (32)

∃ Mbi
> 0 such that

|bi(v, δ)| ≤ Mbi
||v||X ||δ||Y×Y, ∀ (v, δ) ∈ X×Y×Y, i = 1, 2, (33)

there exists α > 0 such that

inf
δ∈Y×Y\{0}

sup
v∈X\{0}

b(v, δ)

||v||X ||δ||Y×Y
≥ α. (34)

Now, let M = MN ×MT ⊂ Y× Y be closed and convex set that contain 0Y×Y, we consider the following
problem:

Problem 3. For given f ∈ X, find u ∈ X and λ = (λN , λT) ∈ M such that:

a(u, v) + b(v, λ) = ( f , v)X , ∀ v ∈ X, (35)

b1(u, δ− λN) ≤ 0, ∀ δ ∈ MN , (36)

b2(u, δ− λT) ≤ 0, ∀ δ ∈ MT . (37)

We have the following result;
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Theorem 2. Let f ∈ X and assume that (30)-(34) hold. Then, there exists a unique solution (u, λ) of Problem AWF
Moreover, if (u1, λ) and (u2, γ) are two solutions of the Problem AWF for given data functions f1 ∈ X and f2 ∈ X
respectively, then, there exists SC > 0 such that:

||u1 − u2||X + ||λ− β||Y×Y ≤ K(|| f1 − f2||X). (38)

Proof. We consider the symmetric a0(., .) and anti-symmetric c(., .) part of a(., .) respectively, defined by

a0 : X× X −→ R, a0(u, v) := (a(u, v) + a(v, u))/2, u, ∀ v ∈ X,

c : X× X −→ R, c(u, v) := (a(u, v)− a(v, u))/2, u, ∀ v ∈ X.

For given 0 < t < 1, let us present the following bi-linear form

at : X× X −→ R, at(u, v) := a0(u, v) + tc(u, v), ∀ u, v ∈ X. (39)

For all t ∈ [0, 1], we note that

at(v, v) ≥ ma||v||2X , |at(u, v)| ≤ 2Ma||u||X ||v||X , ∀ u, v ∈ X.

Let us consider the following auxiliary perturbed problem:

Problem 4. (Auxiliary perturbed problem) For given f ∈ X, find u ∈ X and λ ∈ M, such that

at(u, v) + b(v, λ) = ( f , v)X , ∀ v ∈X , (40)

b1(u, δ− λN) ≤ 0, ∀ δ ∈ MN , (41)

b2(u, δ− λT) ≤ 0, ∀ δ ∈ MT . (42)

The rest of the proof will be treated by steps.
Step 1. If t = 0, the Problem 4 has unique solution. Indeed, if l = 0 the problem is equivalent to the saddle
point problem: find u ∈ X and λ ∈ M such that

L(u, δ) ≤ L(u, λ) ≤ L(v, λ), ∀ v ∈ X, δ ∈ M,

where L : X×M −→ R is defined by:

L(v, δ) :=
1
2

a0(v, v)− ( f , v)X + b2(v, δ2) + b1(v, δ1)

=
1
2

a0(v, v)− ( f , v)X + b(v, δ),

L(., .) has at least one solution, see [10], in fact, from L(v, 0) =
1
2

a0(v, v)− ( f , v)X and the coercivity of a0(., .)
we have

lim
||v||X→+∞

L(v, 0) = +∞.

Moreover
lim

||δ||Y×Y→+∞
inf
v∈X
L(v, δ) = −∞ . (43)

Indeed, let δ0 be an element of M and let uδ0 ∈ X be the solution of the equation

a0(uδ0 , v) + b(v, δ0) = ( f , v)X , ∀ v ∈ X, (44)

which is equivalent that uδ0 is the solution of the following minimization problem

inf
v∈X
L(v, δ0) =

1
2

a0(v, v)− ( f , v)X + b(v, δ0),
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that is
1
2

a0(uδ0 , uδ0)− ( f , uδ0)X + b(uδ0 , δ0) = inf
v∈X
L(v, δ0).

Substituting v = uδ0 in (44), we get

1
2

a0(uδ0 , uδ0)− ( f , uδ0)X + b(uδ0 , δ0) = −
1
2

a(uδ0 , uδ0),

which implies that

inf
v∈X
L(v, δ0) ≤

−ma

2
||uδ0 ||

2
X . (45)

Additionally, using the inf-sup property of the form b(., .); we deduce that there exists a constant C > 0
such that

‖δ0‖Y×Y ≤ C(|| f ||X + ||uδ0 ||X). (46)

From (45) we deduce (38), which implies the existence of solution of Problem 4.
To show the uniqueness of the solution, let us assumes that (u1, λ) and (u2, γ) are two solutions of the

problem
a0(u1, v) + b(v, λ) = ( f , v)X , ∀ v ∈ X,

a0(u2, v) + b(v, γ) = ( f , v)X , ∀ v ∈ X.

By subtracting these two equations, we find

a0(u1 − u2, v) + b(v, λ)− b(v, γ) = 0.

If we set v = u1 − u2, we get a0(u1 − u2, u1 − u2) + b(u1 − u2, λ)− b(u1 − u2, γ) = 0,

a0(u1 − u2, u1 − u2) = −b(u1 − u2, λ) + b(u1 − u2, γ)

= b(u2 − u1, λ) + b(u1 − u2, γ)

= b1(u2 − u1, λN) + b1(u2 − u1, λT) + b2(u1 − u2, γ1) + b2(u1 − u2, γ2)

= b1(u2 − u1, λ1 − γ1) + b2(u2 − u1, λT − γ2) ≤ 0

and by coercivity of a0, we have u1 = u2. Moreover

0 = −a0(u1 − u2, v) = b(v, λ− γ),

and by inf-sup property of b(., .), we have

α‖λ− γ‖Y×Y ≤ sup
v∈X

b(v, λ− γ)

||v||X
= 0,

and finally λ = γ.
Step 2. Assume now that f ∈ X, there exists a unique solution (u, λ) ∈ X×M of the Problem 4, when we have
two solutions (u1, λ) and (u2, γ) of Problem 4 corresponding to two given data f1 ∈ X × X and f2 ∈ X × X
respectively, then

||u1 − u2||X + ||λ− γ||Y×Y ≤
α + ma + 2Ma

αma
|| f1 − f2||X . (47)

In fact
at(u1 − u2, u1 − u2) = ( f1 − f2, u1 − u2)X + b(u1 − u2, γ− λ),

b1(u1 − u2, γ1 − λN) ≤ 0,

b2(u1 − u2, γ2 − λT) ≤ 0.

Since at is coercive and, hence

||u1 − u2||X ≤
1

ma
|| f1 − f2||X . (48)
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In addition, b(v, λ− γ) = ( f1 − f2, v)X + ar(u2 − u1, v) and by inf-sup property of b(., .) we have

α||λ− γ||Y×Y ≤ sup
v∈X\{0}

b(v, λ− γ)

||v||X
≤ || f1 − f2||X + 2Ma||u1 − u2||X ,

that is
||λ− γ||Y×Y ≤

ma + 2Ma

αma
|| f1 − f2||X . (49)

Hence (47) and (48) lead to

||u1 − u2||X + ||λ− γ||Y×Y ≤
α + ma + 2Ma

αma
|| f1 − f2||X . (50)

Step 3. Let τ ∈ [0, 1]. Assume for given f , g ∈ X there exists a unique solution of Problem 4 with t = τ,
(u, λ) ∈ X × M. Then for given f ∈ X there exists a unique solution (u, λ) ∈ X × M of Problem 4 with
t ∈ [τ; τ + t0] ⊂ [0, 1], where:

0 < t0 <
αma

Ma(α + ma + 2Ma)
< 1.

Indeed, given f ∈ X, we define the operator T : X×M −→ X×M as follows T(w, ξ) := (u, λ) if (u, λ) is
the solution of the following problem:

Problem 5. For given f ∈ X, find u ∈ X and λ ∈ M, such that

aτ(u, v) + b(v, λ) = (Fs, v)X , ∀ v ∈ X, (51)

b1(u, δ− λN) ≤ 0, ∀ δ ∈ MN , (52)

b2(u, δ− λT) ≤ 0, ∀ δ ∈ MT , (53)

where (Fs, v)X = ( f , v)X − (s− τ)c(w, v), τ ≤ s ≤ τ + t0 ≤ 1.

We will show that T is a contraction. To this end, we consider two pairs (w1, ξ) and (w2, χ) ∈ X× Y× Y.
We have

||T(w1, ξ)− T(w2, χ)||X×Y×Y = ||u1 − u2||X + ||λ− β||Y×Y.

By the same argument in (48) and by definition of Fs

||λ− γ||Y×Y ≤
ma + 2Ma

αma
t0Ma||w1 − w2||X . (54)

In addition,

||u1 − u2||X ≤
1

ma
t0Ma||w1 − w2||X , (55)

and hence,

||u1 − u2||X + ||λ− γ||Y×Y ≤
t0Ma(α + ma + 2Ma)

αma
||w1 − w2||X ,

||u1 − u2||X + ||λ− γ||Y×Y ≤
t0Ma(α + ma + 2Ma)

αma
||(w1, ξ)− (w2, χ)||X×Y×Y,

which implies that T is a contraction and by Banach fixed theorem we conclude that T has unique fixed point.
Let (ū, λ̄) be the unique fixed point of T, using the definition of the operator T, we deduce that

aτ(ū, v) + b(v, λ̄) = (Fs, v)X , ∀ v ∈ X,

b1(ū, δ− λ̄N) ≤ 0, ∀ δ ∈ MN ,

b2(ū, δ− λ̄T) ≤ 0, ∀ δ ∈ MT

and (Fs, v)X = ( f , v)X − (s− τ)c(ū, v), for τ ≤ s ≤ τ + t0 ≤ 1.
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We substitute Fs in the first equation, we find (ū, λ̄) be the unique fixed point of T, using the definition of
the operator T, we deduce that

aτ(ū, v) + (s− τ)c(ū, v) + b(v, λ̄) = ( f , v)X , ∀ v ∈ X,

b1(ū, δ− λ̄N) ≤ 0, ∀ δ ∈ MN ,

b2(ū, δ− λ̄N) ≤ 0, ∀ δ ∈ MT ,

that is
a0(ū, v) + sc(ū, v) + b(v, λ̄) = as(ū, v) + b(v, λ̄) = ( f , v)X , ∀ v ∈ X,

b1(ū, δ− λ̄N) ≤ 0, ∀ δ ∈ MN ,

b2(ū, δ− λ̄T) ≤ 0, ∀ δ ∈ MT ,

which gives the existence of solution. In order to justify the uniqueness, let us assume that the problem with
l = s ∈ [τ, τ + t0] has two solutions (u1, λ) and (u2, γ), we have

as(u1 − u2, v) + b(v, λ− γ) = 0

as(u1 − u2, u1 − u2) = b(u2 − u1, λ− γ)

= b1(u2 − u1, λN − β1) + b2(u2 − u1, λT − γ2) ≤ 0,

hence, by coercivity of as, we get u1 = u2 and λ = γ.
Step 4. Using Step 3, a finite number of times, we deduce that the Problem 4 admits a unique solution (u, λ)

for t = 1.
Step 5. In order to get (44), let us consider the data f1,2 ∈ X

a(u1, v) + b(v, λ) = ( f1, v)X , ∀ v ∈ X,

b1(u1, δ− λN) ≤ 0, ∀ δ ∈ MN ,

b2(u1, δ− λT) ≤ 0, ∀ δ ∈ MT ,

and
a(u2, v) + b(v, γ) = ( f2, v)X , ∀ v ∈ X,

b1(u2, δ− γ1) ≤ 0, ∀ δ ∈ MN ,

b2(u2, δ− γ2) ≤ 0, ∀ δ ∈ MT .

By subtracting this two equations, we find

a(u1 − u2, v) + b(v, λ)− b(v, γ) = ( f1 − f2, v)X .

For v = u1 − u2, we have

a(u1 − u2, u1 − u2) + b(u1 − u2, λ)− b(u1 − u2, γ) = ( f1 − f2, u1 − u2)X ,

which implies that

a(u1 − u2, u1 − u2) = b(u1 − u2, γ)− b(u1 − u2, λ) + ( f1 − f2, u1 − u2)X

≤ b2(u1 − u2, γ2 − λT) + ( f1 − f2, u1 − u2)X

ma||u1 − u2||2X ≤ || f1 − f2||X ||u1 − u2||X ,

that is
ma||u1 − u2||2X ≤ || f1 − f2||X ||u1 − u2||X , (56)
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and by (34), we have
α||β− λ||Y×Y ≤ Ma||u1 − u2||X + || f1 − f2||X . (57)

Using (56), we can write

ma||u1 − u2||2X ≤
1

2c1
|| f1 − f2||2X +

c1

2
||u1 − u2||2X +

c2

2
||γ− λ||2Y×Y, (58)

where c1, c2 are strictly positive constants.
By combining this inequality and (57), we deduce that(

ma −
c1

2
− c2M2

a
α2

)
||u1 − u2||2X ≤

(
1

2c1
+

c2

α2

)
|| f1 − f2||2X . (59)

The constants c1 and c2 are chosen such that
(

ma − c1
2 −

c2 M2
a

α2

)
, we deduce that there exists c =

c (ma, Ma, Mb, α) such that
||u1 − u2||X ≤ c (|| f1 − f2||X) . (60)

Finally, combining (57) and (60), we have (47).

Proof of Theorem 1. We consider X = Ṽ, Y = H∗Γ and MN × MN given by (18). The subset MN × MN is a
non-empty, closed, convex of H∗Γ × H∗Γ and 0H∗Γ

∈ M.
By using (12) and (15) we deduce that there exists Ma = Ma(A, E , β) > 0 and ma = ma(A, β) > 0 such

that the bilinear form a(., .) satisfies

|a(ũ, ṽ)| ≤ Ma‖ũ‖V‖ṽ‖Ṽ , ∀ ũ, ṽ ∈ V,

a(ũ, ũ) ≥ ma‖ũ‖2
V , ∀ ũ ∈ V.

By the conditions (21) and (22) we deduce that the bilinear form b(., .) satisfies (32). Using inf-sup property
(34) and Theorem 2 we find the result of Theorem 1.

Proof of Proposition 1. To prove the convergence result 1 of the Algorithm 1, lets reconsider the following
perturbed problem, for l ∈ [τ; τ + t0] ⊂ [0, 1], where this time:

0 < t0 <
αma − αma Mb

Ma(α + ma + 2Ma)
, (61)

if Mb < 1. If Mb > 1 we take l ∈ [τ + t0; τ] ⊂ [0, 1] with

−αma Mb
Ma(α + ma + 2Ma)

< t0 <
αma − αma Mb

Ma(α + ma + 2Ma)
. (62)

Given f , g ∈ X, we define the mapping T : X ×M −→ X ×M as follows T(w, ξ) := (u, λ) if (u, λ) is the
solution of the following fixed point problem:

Problem 6. (Fixed point problem) For given f , g ∈ X, find u ∈ X and λ ∈ M, such that

aτ(u, v) = (Fs, v)X − b(v, ξ), ∀ v ∈ X, (63)

b1(u, δ− λN) ≤ 0, ∀ δ ∈ MN , (64)

b2(u, δ− λT) ≤ 0, ∀ δ ∈ MT . (65)

where (Fs, v)X = ( f , v)X − (s− τ)c(w, v) and τ ≤ s ≤ τ + t0 ≤ 1.

It is straightforward that

||u1 − u2||X + ||λ− γ||Y×Y ≤
t0Ma(α + ma + 2Ma) + αma Mb

αma
||(w1, ξ)− (w2, χ)||X×Y×Y. (66)
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By the conditions (61)-(62) and (66), the operator T is a contraction. This implies that there exists (ū, λ̄)

such that T(ū, λ̄) = (ū, λ̄). Hence we have T(u`, λ`) = (u`+1, λ`+1) and the following scheme converges;

Problem 7. For given f ∈ X, find u`+1 ∈ X and λ`+1 ∈ M, such that

aτ(u`+1, v) = (Fs, v)X − b(v, λ`), ∀ v ∈ X, (67)

b1(u`+1, δ− λ`+1
N ) ≤ 0, ∀ δ ∈ MN , (68)

b2(u`+1, δ− λ`+1
T ) ≤ 0, ∀ δ ∈ MT . (69)

The convergence of the iterative fixed point scheme in the Algorithm 1 follows directly.

4. Discretization and numerics

The problem is now how to identify the multipliers λN and λT in the convex sets M1,2. One manner to do
this, is the use of Projection maps. To this end, we consider the finite dimensional spaces Vh ⊂ V, Kh = K ∩Vh

and Wh ⊂W approximating the spaces V and W, respectively, in which h > 0 denotes the spatial discretization
parameter. Let us define:

Xh
n =

{
vh

n|Γ3
: vh ∈ Vh

}
, Xh

T =
{

vh
τ|Γ3

: vh ∈ Vh
}

,

and
Xh =

{
vh
|Γ3

: vh ∈ Vh
}
= Xh

n × Xh
T .

Let us denote also X∗hn ⊂ X∗n
⋂

L2(Γ3) and X∗hT ⊂ X∗T
⋂

L2(Γ3;Rd−1) the finite discretizations of X∗n and
X∗T respectively, such that the following discrete Babuska-Brezzi inf-sup conditions hold;

inf
λh

T∈X∗hT

sup
vh∈Vh

〈
λh

T , vh
τ

〉
‖vh‖V‖λh

T‖X∗hT

≥ α > 0, inf
λh

N∈X∗hn

sup
vh∈Vh

〈
λh

N , vh
n

〉
‖vh‖V‖λh

N‖X∗hn

≥ α > 0,

with α independent of h.
We consider the following discrete approximation of Problem 2:

Problem 8. Find ũh ∈ Ṽh and λh = (λh
N , λh

T) ∈ Mh
N ×Mh

T(µλh
N) such that:

a(ũh, ṽh) + b1(ṽh, λh
N) + b2(ṽh, λh

T) = ( f h, ṽh)Ṽ , ∀ ṽh ∈ Ṽh,

λh
N = PMh

N

(
λh

N − ruh
n

)
,

λh
T = PMh

T(µλh
N)

(
λh

T − ruh
τ

)
,

where r > 0 and

Mh
T(µλh

N) =

{
δh ∈ X∗hT , 〈δh, vh〉Γ3 ≤

∫
Γ3

µλh
N |vh

τ |dΓ, vh ∈ HΓ

}
,

Mh
N =

{
δh ∈ X∗hn , 〈δh, vh〉Γ3 ≤ 0, vh ∈ Kh

n

}
,

and where PM is the projection over M. For more details we refer to [27].

4.1. Matrix formulation

In this section, we adopt the same technical discretization as in the work [27]. Let aj (j = 1, . . . , nc) be a
contact node (i.e. aj are the nodes forming Γ3). The displacement vector at aj is denoted by uj, i.e. uj = u(aj).
Denoting nj and tj, the unit outward normal vector to Γ3 and the unit tangential vector to Γ3, respectively. Let
us introduce the linear mappings

• N : R2d → Rnc , such that (Nu)j = u>j nj, j = 1, . . . , nc.
• T : R2d → Rnc , such that (Tu)j = uj − (u>j nj)nj = (Id − njn>j )uj, j = 1, . . . , nc.

The finite element discretization leads to the following matrices and vectors:
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• A, (2d)× (2d) the elastic matrix (symmetric and positive definite) ;
• B, d× d electric potential stiffness matrix (symmetric positive definite);
• E, d× (2d) coupling matrix;
• Mn and Mτ normal and tangential mass matrices (nc × nc);
• f (the external forces in R2d), q (the external charges in Rd).
• λN , λT the vectors associated to λh

N and λh
T respectively.

With the above notations, we can solve the Problem 8 with Coulomb friction using fixed point procedure
on the friction threshold (see [27,28] for more details). The Fixed point on the friction threshold procedure is
in Uzawa Algorithm 2,

Algorithm 2 Uzawa algorithm (UA) for Problem 8

Initialization: λ`
N and λ`

T
Iteration: ` ≥ 1. Compute successively U`+1, λ`+1

N and λ`+1
T as follow

Step 1: U`+1 such that
AU`+1 = b` (70)

Step 2: λ`+1
N such that

λ`+1
N = (rNu`+1− λ`

N)+ (71)

Step 3: λ`+1
T such that

λ`+1
T = PB(0,−Fλ`

N)(λ`
T − rTu`+1) (72)

where

U =

[
u
ϕ

]
, A =

[
A −E>

E B

]
,

b` =

[
b1

b2

]
=

[
f + MnNλ`

N + MτTλ`
T

q

]
,

B(0,−Fλ`+1
N ) denote the ball of center 0 and radius −Fλ`

N > 0 and x+ denote the non negative part of x i.e.
x+ = max(0, x).

Remark 1. In practice, the Algorithm 2 is solved using Tresca friction with slip bound S` and an fixed point
iteration is used to compute the problem with Coulomb friction, i.e. S`+1 = −Fλ`

N .

To compute the solution of the system (70), we proceed by the following elimination technique:

ϕ = B−1Eu + B−1b2, (73)

Scu = b1 − B−1b2, (74)

where Sc is the Schur complement given by Sc = A− E>B−1E. Since the matrices A and B−1 are symmetric
and positive definite, the suitable method for solving the subsystem (74) is the Conjugate Gradient method
(CG). We take profit from the Schur complement Sc to obtain a convenient preconditioner, as discussed in [16]
and reference therein the (CG)-preconditioner is P = A. The preconditioned Conjugate Gradient method for
solving the system (74) is stated in the Algorithm 3. Once u is computed one can compute ϕ by the explicit
formula (73).

The solution of the problem with Coulomb friction is stated in the algorithm 4

4.2. Numerical example

The algorithms are implemented in MATLAB on computer equipped running Windows 10 core i7 of
2.4GHz clock frequency and 6 GB RAM. As example, the domain consists of two-dimensional rectangular
domain Ω = (0, 2) × (0, 1) as in the Figure 1, with boundaries ΓD = {0} × [0, 1] ∪ {2} × [0, 1], Γ3 =

[0, 2]×{0} and ΓN = [0, 2]×{1}. External body force and charge are f = 0 and q = 0, respectively. On ΓD the
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Algorithm 3 Preconditioned conjugate gradient algorithm (PCG) for solving (74).

Initialization ` = 0. u0 ← u`−1 is given
Solve Bv0 = Eu0

r0 = b` −Au0 − E>v0

Solve Pz0 = r0

p0 = z0

Iteration ` ≥ 0. While
(
(r`)>z`

)
> ε(r0)>z0

1. Solve Bv` = Ep`

2. q` = Ap` + E>v`

3. α` =
(
(r`)>z`

)
/
(
(q`)>p`

)
4. u`+1 = u` + α`p`

5. r`+1 = r` − α`q`

6. Solve Pz`+1 = r`+1

7. γ` =
(
(r`+1)>z`+1

) / (
(r`)>z`

)
8. p`+1 = z`+1 + β`p`.

Algorithm 4 Fixed point algorithm.

Step 1: Compute u`+1 by the algorithm 2.
Step 2: Compute ϕ`+1 by the explicit formula (73).
Step 3: Update the slip bound by S`+1 = −Fλ`

N .

displacements and the electric potential are prescribed, i.e., u = 0 and ϕ = 0 on ΓD. On ΓN , non-homogeneous
Neumann boundary conditions are prescribed f0 = σ(u).n = −2. On {1}× (0, 1) the homogeneous Neumann
boundary condition is applied (σn = 0 and Dn = 0). For seek of simplicity, the normalized gap between Γ3

and the foundation is g(x) = 0 and the friction coefficient is F = 0.6. The mesh is generated by using Matlab
function "kmg.m" built by the author in [29].

The deformed configuration is showed in the Figure 2 and the the contour plot of the electric potential
distribution are showed in the Figure 4. The Figure 3 show the Lagrange multipliers λT,N in the contact zone
Γ3 corresponding to the problem with Coulomb friction condition. The Figures 5 and 6 show the Lagrange
multipliers λT,N with different choices of loads acting on Γ2, it is clear that the slide occurs when the load is
important (large enough). The performance of the algorithm is presented in the Table 1, as showed the number
of iterations is independent of mesh refinement and the time of execution is significant.

Figure 1. Initial configuration.
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Figure 2. Deformed configuration.

Figure 3. Multipliers for F = 0.6.

Figure 4. Contour plot of electic potential.
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Figure 5. Multipliers with load −4.

Figure 6. Multipliers with load −6.

Table 1. Performance of the algorithms

Mesh size h 1/32 1/64 1/128 1/256

Number of iterations of FP 3 4 4 4
Number of iterations of UA 39 39 39 39

Number of iterations of PCG 2 2 2 2
CPU time (seconds) 0.1341 2.0863 21.1882 238.4585
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5. Conclusion

We have investigated numerical analysis of a model describing the process of contact between a
piezoelectric body and non-conductive foundation. The behavior of the material is modeled with a
electro-elastic constitutive law. The contact is formulated by Signorini conditions and Coulomb friction. In
coming works, more general problem with non linear constitutive equation and non monotone friction will be
treated. This is may be handled by fixed point iteration and hemivariational inequalities [30].
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