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Abstract: In this paper we are concerned with the problem of asymptotic integration of positive solutions
of higher order fractional differential equations with Caputo-type Hadamard derivative of the form
C,H Dr

ax(t) = e(t) + f (t, x(t)), a > 1, where r = n + α − 1, α ∈ (0, 1), n ∈ Z+. We shall apply our
technique to investigate the oscillatory and asymptotic behavior of all solutions of the integral equation
x(t) = e(t) +

∫ t
a (ln

t
s )

r−1k(t, s) f (s, x(s)) ds
s , a > 1, r is as above.
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1. Introduction

Consider the initial value problem

C,H Dr
ax(t) = e(t) + f (t, x(t)), a > 1, δkx(a) = bk, bk, k = 1, 2, · · · n are real constants, (1)

and the integral equation

x(t) = e(t) +
∫ t

a
(ln

t
s
)r−1k(t, s) f (s, x(s))

ds
s

, a > 1, (2)

where r = n + α− 1, α ∈ (0, 1), n ∈ Z+, C,H Dr
ax(t) is the Caputo-type Hadamard modification of fractional

derivative of a Cn− scalar valued function x(t) defined on the interval [a, ∞), which was recently proposed by
Jarad et al. [1].

C,H Dr
ax(t) =C,H Jn−r

a δnx(t), δ := t
d
dt

,

where r = n + α− 1, α ∈ (0, 1), n ∈ Z+.
In the sequel we assume that:

1. e : [a, ∞)→ R+ = (0, ∞) is a continuous function;
2. k : [a, ∞) × [c, ∞) → R is a continuous function, and assume that there exists a continuous function,

b : [a, ∞)→ R+ such that |k(t, s)| ≤ b(t) for all t > s > a;
3. f : [a, ∞)×R→ R is continuous and assume that there exists a continuous function, h : [a, ∞) → (0, ∞)

and a real number λ, 0 < λ ≤ 1 and γ is a real number such that 0 ≤ x f (t, x) ≤ tγ−1h(t)|x|λ+1, for x 6=
0, and t ≥ a.

We only consider those solutions of equation (1) that are continuable and nontrivial in any neighborhood of
∞. Such a solution is said to be oscillatory if there exists a sequence tn ⊆ [c, ∞) tn → ∞ such that x(tn) = 0,
and it is nonoscillatory otherwise.

The subject of fractional differential equations has recently evolved as an interesting and popular field of
research. In fact, fractional derivatives provide an excellent tool for the description of memory and hereditary
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properties of various materials and processes. Many researchers have found that fractional differential
equations play important roles in many research areas, such as physics, chemical technology, population
dynamics, biotechnology, and economics [2–14].

However, it has been observed that most of the work on the topic involves either Riemann-Liouville or
Caputo-type fractional derivative. Besides these derivatives, Hadamard fractional derivative is another kind
of fractional derivatives that was introduced by Hadamard in 1892 [15]. This fractional derivative differs from
the other ones in the sense that the kernel of the integral (in the definition of Hadamard derivative) contains
logarithmic function of arbitrary exponent. For background material of Hadamard fractional derivative and
integral, we refer [4,16–27].

The asymptotic behavior results for fractional differential equations with Caputo-type Hadamard
derivative are scarce and it seems that there are no such results for such equations. The main objective of
this paper is to establish some new criteria for the asymptotic behavior of all positive solutions of equation (1)
as well as the oscillatory and asymptotic behavior of the integral equation (2).

We introduce some notations and definition of fractional calculus [3,4].

Definition 1. For at least n−times differentiable function f : (a,+∞) → R the Caputo-type Hadamard
derivative of fractional order α is defined as

C,H Dr
a f (t) =

1
Γ(n− α)

∫ t

a
(ln

t
s
)n−α−1δn f (s)

ds
s

, n− 1 < α < n, n = [α],

where δ = t d
dt and [α] denotes the integer part of the real number α.

Definition 2. The Hadamard fractional integral of order r ∈ R+ of function f (t) for all t > a > 0 is defined by

H D−α
a f (t) =

1
Γ(α)

∫ t

a
(ln

t
s
)α−1 f (s)

ds
s

,

where Γ(α) is the Euler Gamma function.

Definition 3. The Hadamard derivative of order r ∈ [n− 1, n), n ∈ Z+ of a function f (t) is given by

H Dα
a f (t) =

1
Γ(n− α)

(t
d
dt
)n
∫ t

a
(ln

t
s
)n−α−1 f (s)

ds
s

.

The corresponding Volterra integral equation can be easily derived using Lemma 2.5 in [1] and it takes
the form

x(t) =
n−1

∑
k=0

bk
k!
(ln

t
s
)k +

1
Γ(r)

∫ t

a
(ln

t
s
)r−1[e(s) + f (s, x(s))]

ds
s

. (3)

2. Asymptotic Behavior of equation (1)

To obtain our main results of this paper, we need the following two lemmas.

Lemma 4. Let β, γ and p be positive constants such that [p(β− 1) + 1] > 0, p(γ− 1) + 1 > 0. Then

∫ t

a

(
ln

t
s

)p(β−1) (
ln

s
a

)p(γ−1) ds
s

= B
(

ln
t
a

)θ

, t ≥ 0. (4)

Where B := B[p(γ− 1) + 1, p(β− 1) + 1], B[ξ, η] =
∫ 1

0 sξ−1(1− s)η−1ds, (ξ > 0, η > 0) and θ = p(β + γ− 2) +
1.

Proof. Let ln s
a = τ ln t

a . Then s = a
( t

a
)τ , ds = a

( t
a
)τ ln

( t
a
)

dτ and ds
s = ln

( t
a
)

dτ. Therefore we obtain

∫ t
a
(
ln t

s
)p(β−1) (ln s

a
)p(γ−1) ds

s =
∫ 1

a

(
ln
(

t
a
( t

a
)−τ

))p(β−1) (
τ ln

( t
a
))p(γ−1) ln

( t
a
)

dτ

=
(
ln t

a
)p(β+γ−2)+1 ∫ 1

0 (1− τ)p(β−1)τp(γ−1)dτ.
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Lemma 5. [28]. If X and Y are nonnogative, then

Xλ − (1− λ)Yλ − λXYλ−1 ≤ 0, 0 < λ < 1, (5)

where equality holds if and only if X = Y.

In what follows, we let

g(t) =

(
(1− λ)λλ/(1−λ)

)
Γ(r)

∫ t

t1

(
ln

t
s

)r−1 ((
ln

s
a

)γ−1
mλ/(λ−1)(s)h1/(1−λ)(s)

)
ds
s

, (6)

and 0 < λ < 1, t ≥ t1 for some t1 ≥ a, where m : [a, ∞)→ (0, ∞) is a continuous function.
Now we give sufficient conditions under which any eventually positive solution x of equation (1) satisfies

x(t) = O
(

ln
t
a

)n−1
as t→ ∞.

Theorem 6. Let 0 < λ < 1 and conditions (1), (2) hold and suppose that p > 1, p(r− 1) + 1 > 0, p(γ− 1) + 1 > 0,
q = p

p−1 , γ = (n− r) + 1
q ,

g(t)
(

ln
t
a

)1−n
is bounded on [a, ∞), g(t) is defined by (6), (7)

(
ln

t
a

)1−n ∫ t

a

(
ln

t
s

)r−1
|e(s)|ds

s
is bounded for all t ≥ a, (8)

and ∫ ∞ (
ln

s
a

)(n−1)q
mq(s)ds < ∞. (9)

If x is positive solution of equation (1), then

lim sup
t→∞

(
ln

t
a

)1−n
x(t) < ∞.

Proof. Let x(t) be an eventually positive solution of equation (1), say x(t) > 0 for t ≥ t1 for some t1 ≥ a. Since
equation (1) is equivalent to equation (3), we see that there exists a constant C1 > 0 such that

x(t) ≤ C1

(
ln

t
a

)r−1
+

1
Γ(r)

∫ t

a

(
ln

t
s

)r−1
[e(s) + f (s, x(s))]

ds
s

. (10)

We let F(t) = e(t) + f (t, x(t)). In view of condition (2), we can write

x(t) ≤ C1
(
ln t

a
)n−1

+ 1
Γ(r)

∫ t1
a
(
ln t

s
)r−1 |F(s)| ds

s + 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 e(s) ds

s

+ 1
Γ(r)

∫ t
t1

ln
( t

s
)r−1 (ln s

a
)γ−1

[h(s)xλ(s)−m(s)x(s)] ds
s

+ 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s .

Applying (5) of Lemma 5 to [h(s)xλ(s)−m(s)x(s)] with

X = (h)1/λx and Y =

(
1
λ

m(h−1/λ)

)1/(λ−1)
,

we have
h(s)xλ(s)−m(s)x(s) ≤ (1− λ)λλ/(1−λ)mλ/(λ−1)(s)h1/(1−λ)(s),



Open J. Math. Sci. 2019, 3, 40-48 43

and so,
x(t) ≤ C1

(
ln t

a
)n−1

+ 1
Γ(r)

∫ t1
a
(
ln t

s
)r−1 |F(s)| ds

s + 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 |e(s)| ds

s

+ (1−λ)λλ/(1−λ)

Γ(r)

∫ t
t1

ln
( t

s
)r−1 (ln s

a
)r−1

[mλ/(λ−1)(s)h1/(1−λ)(s)] ds
s

+ 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s .

or,
x(t) ≤ C1

(
ln t

a
)n−1

+ 1
Γ(r)

∫ t1
a
(
ln t

s
)r−1 |F(s)| ds

s + 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 |e(s)| ds

s

+ g(t) + 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s

≤ C
(
ln t

a
)n−1

+ 1
Γ(r)

∫ t
t1

(
ln t

s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s ,

(11)

or, (
ln

t
a

)n−1
x(t) := z(t) ≤ 1 + C +

(
ln t

a
)1−n

Γ(r)

∫ t

t1

(
ln

t
s

)r−1 (
ln

s
a

)γ−1
m(s)x(s)

ds
s

, (12)

where C is the upper bound of the function(
ln

t
a

)1−n
[

1
Γ(r)

(∫ t1

a

(
ln

t
s

)r−1
|F(s)|ds

s

)
+ g(t) +

1
Γ(r)

∫ t

t1

(
ln

t
s

)r−1
|e(s)|ds

s

]
.

By applying the Holder inequality and Lemma 4, we obtain

∫ t
t1

(
ln t

s
)r−1 (ln t

a
)γ−1 m(s)x(s) ds

s ≤
(∫ t

t1

(
ln t

s
)p(r−1) (ln t

a
)p(γ−1) m(s)x(s) ds

s

)1/p (∫ t
t1
(m(s))qxq(s)ds

)1/q

≤
(∫ t

0

(
ln t

s
)p(r−1) (ln t

a
)p(γ−1) ds

s

)1/p (∫ t
t1
(m(s))qxq(s)ds

)1/q

≤
(

B
(
ln t

a
)θ
)1/p (∫ t

t1
(m(s))qxq(s)ds

)1/q
,

where B = B[p(γ− 1) + 1, p(r− 1) + 1] and θ = p(r + γ− 2) + 1 and by using γ = (n− r) + 1
q , we have

1
Γ(r)

∫ t

t1

(
ln

t
s

)r−1 (
ln

s
a

)γ−1
m(s)x(s)

ds
s
≤ B1/p

Γ(r)

(
ln

t
a

)n−1 (∫ t

t1

(m(s))qxq(s)ds
)1/q

. (13)

Using (13) in (12), we have

z(t) ≤ 1 + C +
B1/p

Γ(r)

∫ t

t1

(
ln

s
a

)(n−1)q
(m(s)z(s))qds.

Using this inequality and the elementary inequality

(x + y)q ≤ 2q−1(xq + yq), x, y ≥ 0 and q > 1,

we obtain from (12)

zq(t) ≤ 2q−1

(
(1 + C)q +

(
B1/p

Γ(r)

)q ∫ t

t1

(
ln

s
a

)(n−1)q
mq(s)zq(s)ds

)
.

If we denote u(t) = zq(t), i.e. z(t) = u1/q(t), P = 2q−1[(1 + C)q] and Q = 2q−1
(

B1/p

Γ(r)

)q
then

u(t) ≤ P + Q
∫ t

t1

(
ln

s
a

)(n−1)q
mq(s)u(s)ds, t ≥ t1 ≥ a. (14)
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The conclusion follows from Gronwall’s inequality and we conclude that

lim sup
t→∞

(
ln

t
a

)1−n
x(t) < ∞.

Similar to the sublinear case, one can easily prove the following results.

Theorem 7. Let λ = 1 and the hypotheses of Theorem 6 hold with m(t) = h(t) and g(t) = 0. Then the conclusion of
Theorem 6 holds.

Example 1. Let p > 1, r = α. i.e., n = 1, 0 < α = 1− 1
2p < 1, α = γ and q = p

p−1 . Clearly,

p(α− 1) + 1 = p(γ− 1) + 1 = p(1− 1
2p
− 1) + 1 =

1
2
> 0 and θ = p(α + γ− 2) + 1 = 0.

Let the functions a(t) and b(t) be as in (i) and (ii) with b(t) be a bounded function and let f (t, x) = tγ−1h(t)xλ,
where 0 < λ < 1, h : R+ → R+ is a continuous function with h(t) = m(t),

∫ ∞
hq(s)ds < ∞ and lim sup

t→∞

(∫ t

t1

(
ln

t
s

)α−1
sγ−1h(s)ds

)
< ∞,

and let e : R+ → R be a continuous function with lim
t→∞

∫ t
c
(
ln t

s
)α−1 |e(s)|ds < ∞.

All conditions of Theorem 6 are satisfied and hence every positive solution x of equation (1) is bounded.

3. Oscillatory and asymptotic behavior of equation (2)

In this section, we present the following result on the asymptotic behavior of nonoscillatory solutions of
equation (2).

Theorem 8. Let 0 < λ < 1 and conditions (1), (3) hold and suppose that p > 1, q = p
p−1 , γ = (n − r) + 1

q ,
p(r− 1) + 1 > 0, p(γ− 1) + 1 > 0, the functions b(t) is bounded, (7) and (9) hold and

lim sup
t→∞

(
ln

t
a

)1−n
e(t) < ∞ and lim inf

t→∞

(
ln

t
a

)1−n
e(t) > −∞. (15)

If x(t) is any nonoscillatory solution of equation (2), then

lim sup
t→∞

(
ln

t
a

)1−n
|x(t)| < ∞. (16)

Proof. Let x(t) be an eventually positive solution of equation (2). We may assume that for t ≥ t1 for some
t1 ≥ a,

x(t) ≤ e(t) +
∫ t1

a

(
t
s

)r−1
|k(t, s)| f (s, x(s))

ds
s
+
∫ t

t1

(
t
s

)r−1
|k(t, s)| f (s, x(s))

ds
s

,

x(t) ≤ e(t) + b(t)
∫ t1

a

(
ln

t
s

)r−1
f (s, x(s))

ds
s
+ b(t)

∫ t

t1

(
t
s

)r−1 (
ln

s
a

)γ−1
h(s)xλ(s)

ds
s

. (17)

We let F(t) = f (t, x(t)). In view of conditions (1) and (3) we may then write

x(t) ≤ e(s) +
∫ t1

a
(
ln t

s
)r−1 |F(s)| ds

s

+ b(t)
∫ t

t1

( t
s
)r−1 (ln s

a
)γ−1 h(s)[h(s)xλ(s)−m(s)x(s)] ds

s

+ b(t)
∫ t

t1

( t
s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s .
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Proceeding exactly as in the proof of Theorem 6, we obtain

x(t) ≤ e(s) + b(t)
∫ t

t1

( t
s
)r−1 |F(s)| ds

s

+
(
(1− λ)λλ/(1−λ)

)
b(t)

∫ t
t1

( t
s
)r−1 (ln s

a
)γ−1

[mλ/(λ−1)(s)h1/(1−λ)(s)] ds
s

+ b(t)
∫ t

t1

( t
s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s ,

or,
x(t) ≤ e(s) + b(t)

∫ t1
a
( t

s
)r−1 |F(s)| ds

s + b(t)g(t)

+ b(t)
∫ t

t1

( t
s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s .
(18)

Applying Holder’s inequality and Lemma 4, we obtain

∫ t
t1

( t
s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s ≤
(∫ t

t1

(
ln t

s
)p(r−1) (ln s

a
)p(γ−1) ds

s

)1/p (∫ t
t1

mq(s)xq(s) ds
s

)1/q

≤
(∫ t

a
(
ln t

s
)p(r−1) (ln s

a
)p(γ−1) ds

s

)1/p (∫ t
t1

mq(s)xq(s) ds
s

)1/q

≤
(

B
(
ln t

a
)θ
)1/p (∫ t

t1
mq(s)xq(s) ds

s

)1/q
,

(19)

where B = B[p(γ− 1) + 1, p(r− 1) + 1] and θ = p(r + γ− 2) + 1. Using γ = (n− r) + 1
q , we have

b(t)
∫ t

t1

(
ln

t
s

)r−1 (
ln

s
a

)γ−1
m(s)x(s)

ds
s
≤ B1/pb(t)

(
ln

t
a

)n−1 (∫ t

t1

mq(s)xq(s)
ds
s

)1/q
. (20)

It follows from (18) and (20) that(
ln

t
a

)1−n
x(t) := z(t) ≤ 1 + C + c

(∫ t

t1

((
ln

s
a

)n−1
m(s)

)q
zq(s)ds

)1/q

, (21)

where C and c are the upper bound of the functions(
ln

t
a

)1−n
[
|e(s)|+ b(t)

∫ t1

a

(
ln

t
s

)r−1
|F(s)|ds + b(t)g(t)

]
and B1/pb(t),

respectively. The rest of the proof is similar to that of Theorem 6 and conclude that

lim sup
t→∞

(
ln

t
a

)1−n
x(t) < ∞. (22)

If x(t) is eventually negative, we can set y = −x to see that y satisfies equation (2) with e(t) be replaced by
−e(t) and f (t, x) by − f (t,−y). It follows in a similar manner that

lim sup
t→∞

(
ln

t
a

)1−n
(−x(t)) < ∞. (23)

It follows from (22) and (23) that (16) holds. This completes the proof.

Next, by employing Theorem 6 we present the following oscillation result for equation (2).

Theorem 9. Let 0 < λ < 1, conditions (1)-(3) hold and suppose that p > 1, q = p
p−1 , γ = n− r− 1

q , p(r− 1)+ 1 > 0,

and p(γ− 1) + 1 > 0. In addition we assume that the function b(t)
(
ln t

a
)n−1 is bounded and conditions (7), (9) and

(15) hold. If
lim sup

t→∞
e(t) = ∞ and lim inf

t→∞
e(t) = −∞ (24)
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for all t1 ≥ a, then equation (2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (2), say x(t) > 0 for t ≥ t1 for some t1 ≥ 0. The
proof when x(t) is eventually negative is similar. Proceeding as in the proof of Theorem 7 we arrive at (18).
Therefore,

x(t) ≤ e(t) + b(t)
∫ t1

a
(
ln t

s
)r−1 |F(s)| ds

s + b(t)g(t)

+ b(t)
∫ t

t1

(
ln t

s
)r−1 (ln s

a
)γ−1 m(s)x(s) ds

s .

Using (19) in the above inequality we have

x(t) ≤ e(t) + b(t)
∫ t1

a
(
ln t

s
)r−1 |F(s)| ds

s + b(t)g(t) + B1/pb(t)
(
ln t

a
)n−1

(∫ t
t1

mq(s)xq(s) ds
s

)1/q

≤ e(t) + b(t)
∫ t1

a
(
ln t

s
)r−1 |F(s)| ds

s + b(t)g(t)

+ B1/pb(t)
(
ln t

a
)n−1

(∫ t
t1

(
ln s

a
)(n−1)q mq(s)

((
ln s

a
)1−n x(s)

)q
ds
)1/q

.

Clearly, the conclusion of Theorem 6 holds. This together with (7) and (8) imply that the second integral in this
inequality is bounded and hence one can easily see that

x(t) ≤ M + e(t), (25)

where M is a positive constant. Finally, taking lim inf in (25) as t → ∞ and using condition (22) result in a
contradiction with the fact that x(t) is eventually positive.

Theorem 10. Let λ = 1 and the hypotheses of Theorems 8 or 9 hold with m(t) = h(t) and g(t) = 0. Then the
conclusions of Theorems 8 and 9 hold.

Example 2. Let p > 1, 0 < r = 2− 1
p ∈ (1, 2), q = p

p−1 and γ = 2− r + 1
q . Clearly

p(r− 1)+ 1 = p(2− 1
p
− 1)+ 1 = p > 1, p(γ− 1)+ 1 = p(2−γ+

1
q
− 1)+ 1 > 0 and θ = p(r+γ− 2)+ 1 = p.

Let f (t, x) =
(
ln t

a
)γ−1 h(t)xλ, where 0 < λ < 1, h : R+ → R+ is a continuous function with h(t) = m(t),

∫ ∞
hq(s)ds < ∞ and lim sup

t→∞

(
ln

t
a

)−1
(∫ t

t1

(
ln

t
a

)r−1
sγ−1h(s)ds

)
< ∞,

and let e : R+ → R be a continuous function with

lim sup
t→∞

(
ln

t
a

)−1
e(t) < ∞ and lim inf

t→∞

(
ln

t
a

)−1
e(t) > −∞.

All conditions of Theorem 8 are satisfied and hence every nonocillatory solution x(t) of equation (2) satisfies
(16). In addition, if the function e(t) satisfies condition (24), then equation (2) is oscillatory. We may take
e(t) = (ln t) sin t.

Remark 1. We note that Theorems 8 and 9 are valid when θ
p = n− 1. Here, we study the cases when

(I) σ :=
θ

p
− n + 1 > 0 or (I I) σ < 0.

Case (I) If γ > (n− r) + 1
q , then θ > p(r + γ− 2) + 1 and so σ > 0. In this case we need to impose the condition

that the function b(t)
(
ln t

a
)σ is bounded and the results are valid.
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Case (II) If γ < (n− r) + 1
q , then θ < p(r + γ− 2) + 1 and so σ < 0. In this case condition (9) may be replaced

by ∫ ∞ (
ln

s
a

)σq (
ln

s
a

)(n−1)q
mq(s)ds < ∞.

and the results remain valid. The details are left to the reader.

4. General Remarks:

1. The results of this paper are presented in a form which is essentially new and of higher degree of
generality.

2. It would be of interest to study equations (1) and (2) when f satisfies condition (ii) with λ > 1.

5. Conclusion

We are concerned with the problem of asymptotic integration of positive solutions of higher order
fractional differential equations with Caputo-type Hadamard derivative, and establish some new criteria for
the asymptotic behavior of all positive solutions of equation (1) as well as the oscillatory and asymptotic
behavior of the integral equation (2).
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[10] OŠRegan, D., & Staněk, S. (2013). Fractional boundary value problems with singularities in space variables. Nonlinear

Dynamics, 71(4), 641-652.
[11] Ahmad, B., Ntouyas, S. K., & Alsaedi, A. (2013). A study of nonlinear fractional differential equations of arbitrary

order with Riemann-Liouville type multistrip boundary conditions. Mathematical Problems in Engineering, 2013.
[12] Ahmad, B., & Nieto, J. J. (2013). Boundary value problems for a class of sequential integrodifferential equations of

fractional order. Journal of Function Spaces and Applications, 2013.
[13] Zhang, L., Ahmad, B., Wang, G., & Agarwal, R. P. (2013). Nonlinear fractional integro-differential equations on

unbounded domains in a Banach space. Journal of Computational and Applied Mathematics, 249, 51-56.
[14] Liu, X., Jia, M., & Ge, W. (2013). Multiple solutions of a p-Laplacian model involving a fractional derivative. Advances

in Difference Equations, 2013(1), 126.
[15] Hadamard, J. (1892). Essai sur l’etude des fonctions, donnees par leur developpement de Taylor. Journal de

Mathematiques pures et appliquées, 8, 101-186.
[16] Butzer, P. L., Kilbas, A. A., & Trujillo, J. J. (2002). Compositions of Hadamard-type fractional integration operators

and the semigroup property. Journal of Mathematical Analysis and Applications, 269(2), 387-400.
[17] Butzer, P. L., Kilbas, A. A., & Trujillo, J. J. (2002). Fractional calculus in the Mellin setting and Hadamard-type

fractional integrals. Journal of Mathematical Analysis and Applications, 269(1), 1-27.



Open J. Math. Sci. 2019, 3, 40-48 48

[18] Butzer, P. L., Kilbas, A. A., & Trujillo, J. J. (2002). Mellin transform analysis and integration by parts for
Hadamard-type fractional integrals. Journal of Mathematical Analysis and Applications, 270(1), 1-15.

[19] Anatoly, A. K. (2001). Hadamard-type fractional calculus. Journal of the Korean Mathematical Society, 38(6), 1191-1204.
[20] Kilbas, A., & Trujillo, J. (2003). Hadamard-type integrals as G-transforms. Integral Transforms and Special Functions,

14(5), 413-427.
[21] Coffey, W., & Kalmykov, Y. P. (2012). The Langevin equation: with applications to stochastic problems in physics, chemistry

and electrical engineering (Vol. 27). World Scientific.
[22] Mishra, S., Mishra, L. N., Mishra, R. K., & Patnaik, S. (2019). Some applications of fractional calculus in technological

development. Journal of Fractional Calculus and Applications, 10(1), 228-235.
[23] Pathak, H. K. (2013). A study on some problems on existence of solutions for nonlinear functional-integral equations.

Acta Mathematica Scientia, 33(5), 1305-1313.
[24] Mishra, L. N., & Sen, M. (2016). On the concept of existence and local attractivity of solutions for some quadratic

Volterra integral equation of fractional order. Applied Mathematics and Computation, 285, 174-183.
[25] Mishra, L. N., Sen, M., & Mohapatra, R. N. (2017). On existence theorems for some generalized nonlinear

functional-integral equations with applications. Filomat, 31(7), 2081-2091.
[26] Mishra, L. N., & Agarwal, R. P. (2016). On existence theorems for some nonlinear functional-integral equations.

Dynamic Systems and Applications, 25(3), 303-320.
[27] Mishra, L. N. (2017). On existence and behavior of solutions to some nonlinear integral equations with Applications.

National Institute of Technology, Silchar, 788(010).
[28] Hardy, G. H., Littlewood, J. E., & Pólya, G. (1959). Inequalities. Cambridge university press.

c© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Asymptotic Behavior of equation (1)
	Oscillatory and asymptotic behavior of equation (2)
	General Remarks:
	 Conclusion

