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Abstract. In this work we develop the weighted square integral estimates
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1. Introduction

Among the most important of all partial differential equations are undoubt-
edly second order Laplace equation. Some of practical problems also covered
by higher order Laplace equation. In [1], [2], [3], [4] and [5] the author de-
velop the energy estimates for convex functions, 4-convex functions and also
for super-harmonic functions. These estimates are very important in financial
mathematics one can see [6], so it is also interesting to develop similar results for
subsolution of fourth order Laplace equation. The fourth order Laplace equation
with n variables is given as

∂4u(x)

∂x4
1

+
∂4u(x)

∂x4
2

+ . . .+
∂4u(x)

∂x4
n

= 0 (1)
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Let us denote

∆4 ≡ ∂4

∂x4
1

+
∂4

∂x4
2

+ . . .+
∂4

∂x4
n

Then (1) becomes as

∆4u(x) = 0 (2)

The function u(x) ∈ C4(D) is called subsolution (suppersolution) of fourth order
Laplace equation (2) if

∆4u(x) ≥ (≤)0 (3)

The bounded measurable function u(x) is called week subsolution of (1) if u(x)
satisfy ∫

D

u(x)∆∗4ψ(x)dx ≥ 0 (4)

It is trivial that ∆4 is self-adjoint operator i.e.

∆4 = ∆∗4

Through out the paper we will use the following notations.

grad u(x) =
(∂u(x)

∂x1
,
∂u(x)

∂x2
, . . . ,

∂u(x)

∂xn

)
grad2 u(x) =

(∂2u(x)

∂x2
1

,
∂2u(x)

∂x2
2

, . . . ,
∂2u(x)

∂x2
n

)
We will organize the paper in the following way in second section we will derive
the energy estimate for the fourth order Laplace equation. Also we approximate
the week subsolution by the smooth ones. In the last section we will derived
similar estimate regarding week subsolution.

2. The Weighted Energy Estimates for the Smooth Subsolution for
the Fourth Order Laplace Equation.

Lemma 2.1. [5] Assume f(x) ∈ C4(I) is the smooth and h(x) is the smooth
non-negative weight function having compact support. From the proof of Theorem
2.1 in [5] one can derive the identity in Lemma 2.1 as:∫

I

(
f

′′
(x)

)2

h(x)dx =

∫
I

f(x)f (iv)(x)h(x)dx− 2

∫
I

f(x)f
′′
(x)h

′′
(x)dx

+
1

2

∫
I

f2(x)h(iv)(x)dx (5)
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Theorem 2.2. Let ui(x) ∈ C4(D), i = 1, 2 be the smooth subsolutions of (2)

over the domain D ⊆ Rn and also ∂2ui

∂x2
j
≥ 0 ∀ j = 1, 2, . . . , n, then we have the

following energy estimate for the difference of the functions∫
D

∣∣grad2
(
u2(x)− u1(x)

)∣∣2 h(x)dx

≤
∫
D

[
1

2

(
u2(x)− u1(x)

)2
− sup
x∈D

∣∣(u2(x)− u1(x)
)∣∣ (u2(x) + u1(x)

)] n∑
j=1

∂4h(x)

∂x4
j

dx (6)

where h(x) is the non-negative smooth weight function satisfying h(x) = ∂h(x)
∂xj

= ∂2h(x)
∂x2

j
= ∂3h(x)

∂x3
j

= 0 j = 1, . . . , n ∀ x ∈ ∂D
∂2h(x)
∂x2

j
≤ 0 j = 1, . . . , n for x ∈ D.

(7)

Proof. Let

u(x) = u2(x)− u1(x) (8)

Take ∫
D

∣∣grad2u(x)
∣∣2 h(x) dx =

∫
D

[(∂2u(x)

∂x2
1

)2
+
(∂2u(x)

∂x2
2

)2
+ . . .+

(∂2u(x)

∂x2
n

)2]
h(x) dx

=

∫
D

(∂2u(x)

∂x2
1

)2
h(x) dx+

∫
D

(∂2u(x)

∂x2
2

)2
h(x) dx+ . . .+

∫
D

(∂2u(x)

∂x2
n

)2
h(x) dx (9)

By Lemma 2.1, the above may write as

=

n∑
j=1

( ∫
D

u(x)
∂4u(x)

∂x4
j

h(x)dx−2

∫
D

u(x)
∂2u(x)

∂x2
j

∂2h(x)

∂x2
j

dx+
1

2

∫
D

u2(x)
∂4h(x)

∂x4
j

dx
)

≤
∫
D

|u(x)|

∣∣∣∣∣∣
n∑
j=1

∂4u(x)

∂x4
j

∣∣∣∣∣∣h(x)dx+ 2

∫
D

|u(x)|

∣∣∣∣∣∣
n∑
j=1

∂2u(x)

∂x2
j

∂2h(x)

∂x2
j

∣∣∣∣∣∣ dx
+

1

2

∫
D

u2(x)

n∑
j=1

∂4h(x)

∂x4
j

dx
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≤ sup
x∈D
|u(x)|

∫
D

∣∣∣∣∣∣
n∑
j=1

∂4u(x)

∂x4
j

∣∣∣∣∣∣ h(x) dx+ 2 sup
x∈D
|u(x)|

∫
D

∣∣∣∣∣∣
n∑
j=1

∂2u(x)

∂x2
j

∂2h(x)

∂x2
j

∣∣∣∣∣∣ dx
+

1

2

∫
D

u2(x)

n∑
j=1

∂4h(x)

∂x4
j

dx

Now replacing u(x) = u2(x)− u1(x) we obtain,∫
D

∣∣grad2
(
u2(x)− u1(x)

)∣∣2 h(x) dx

≤ sup
x∈D

∣∣(u2(x)− u1(x)
)∣∣ ∫

D

∣∣∣∣∣∣
n∑
j=1

∂4

∂x4
j

(
u2(x)− u1(x)

)∣∣∣∣∣∣ h(x) dx

+ 2 sup
x∈D
|
(
u2(x)− u1(x)

)
|
∫
D

∣∣∣∣∣∣
n∑
j=1

∂2

∂x2
j

(
u2(x)− u1(x)

) ∂2h(x)

∂x2
j

∣∣∣∣∣∣ dx
+

1

2

∫
D

(
u2(x)− u1(x)

)2 n∑
j=1

∂4h(x)

∂x4
j

dx

≤ sup
x∈D
|u2(x)− u1(x)|

n∑
j=1

∫
D

(∂4u2(x)

∂x4
j

+
∂4u1(x)

∂x4
j

)
h(x) dx

−2 sup
x∈D
|u2(x)− u1(x)|

n∑
j=1

∫
D

(∂2u2(x)

∂x2
j

+
∂2u1(x)

∂x2
j

)∂2h(x)

∂x2
j

dx

+
1

2

∫
D

(
u2(x)− u1(x)

)2 n∑
j=1

∂4h(x)

∂x4
j

dx (10)

Again using the definition of weight function and integration by parts formula,
we obtain∫

D

n∑
j=1

∂4ui(x)

∂x4
j

h(x) dx =

∫
D

ui(x)

n∑
j=1

∂4h(x)

∂x4
j

dx i = 1, 2

and ∫
D

n∑
j=1

∂2ui(x)

∂x2
j

∂2h(x)

∂x2
j

dx =

∫
D

ui(x)

n∑
j=1

∂4h(x)

∂x4
j

dx i = 1, 2

the above (10) becomes∫
D

∣∣grad2
(
u2(x)− u1(x)

)∣∣2 h(x)dx ≤
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D

(1

2

(
u2(x)− u1(x)

)2 − sup
x∈D
|u2(x)− u1(x)|

(
u2(x) + u1(x)

)) n∑
j=1

∂4h(x)

∂x4
j

dx

�

Remark 2.1. Taking the supremum norm on above inequality we obtained∫
D

∣∣grad2
(
u2(x)− u1(x)

)∣∣2 h(x)dx

≤
[

1

2
‖u2(x)− u1(x)‖2L∞ + ‖u2(x)− u1(x)‖L∞

×
(
‖u1(x)‖L∞ + ‖u2(x)‖L∞

)]
×
∫
D

∆4h(x)dx. (11)

Remark 2.2. The above estimates over domain D ∈ Rn also holds for arbitrary
ball B(xo, r) with center xo and radius r.

From now we use ball B(xo, r) as domain in Rn.

3. The Weighted Energy Estimates for the Week Subsolution of
Fourth Order Laplace Equation.

The continuous function u(x) is said to be week subsolution of (2) if∫
B

u(x) ∆4ψ(x) dx ≥ 0 (12)

where
ψ ∈ C∞c (B).

Now we will approximate the week subsolution of (2) by the smooth ones. For
this we will use the classical mollification. Define

η(x) =

{
c exp( 1

|x|2−1 ) if |x| < 1

0 if |x| ≥ 1
(13)

where x ∈ Rn and c > 0 is such that∫
Rn

η(x) dx = 1. (14)

Now we define

uε(x) = ε−n
∫
B

η
(x− y

ε

)
u(y) dy (15)

Let us denote

ηε(x− y) = ε−n η
(x− y

ε

)
(16)
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By the definition ηε(x− y), It is trivial that

∂4ηε(x− y)

∂x4
i

=
∂4ηε(x− y)

∂y4
i

∀ i = 1, 2, . . . , n (17)

so,

∆4
x uε(x) = ε−n

∫
B

u(y) ∆4
y ηε(x− y) dy (18)

where ∆4
x and ∆4

y are the fourth order Laplace operator w.r.t x and y respec-
tively.
Let the ball Bk = B(xo, rk) with rk = k+1

k+2 r , k = 1, 2, .
The next theorem tells about the existence of smooth approximation.

Theorem 3.1. Let u(x) be the continuous week subsolution of (2) and convex
over the ball B. Then for any k = 1, 2, 3, . . . , there exists ε̂ > 0 such that 0 <
ε < ε̂ each function uε(x) is smooth convex over the ball Bk and also

∆4uε(x) ≥ 0 if x ∈ Bk.

Proof. For fixed k = 1, 2, . . . ,
Let

ε̂ =
r

2(k + 2)
(19)

By the definition, it is trivial that uε(x) is infinitely differentiable and also from
[7] uε(x) is smooth convex for each of its arguments.
we next claim that ηε(x− y) has compact support in the ball B.

Take another ball B̂k in the following way

B̂k = B(x0,
2k + 3

2k + 4
r) (20)

If y /∈ B̂k then

|y − x| >
∣∣∣∣2k + 3

2k + 4
− 2k + 2

2k + 4

∣∣∣∣ r =
1

2(k + 2)
r > ε (21)

⇒ ηε(x− y) = 0 (22)

Hence ηε(x− y) has compact support.
Hence by the definition of week subsolution and also using (22), we get∫

B

u(y) ∆4
y ηε(x− y) dy ≥ 0. (23)

�
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We will defined hk(x) as:{
hk(x) > 0 if x ∈ Bk(x0, rk)

hk(x) = 0 if x ∈ ∂Bk(x0, rk)

where rk = k+1
k+2r

Theorem 3.2. Let u(x) be the continuous week subsolution of (2) and convex

over the ball B then it possesses the following weak partial derivatives ∂2u(x)
∂x2

i
, i =

1, 2, . . . , n over the ball B.

Proof. For the existence of first derivative ∂u(x)
∂xi

i = 1, 2, ..., n one can see [4].

Let us suppose the mollification uε(x) defined in (15) for the week subsolution
of fourth order Laplace equation u(x).
For the continuous function u(x), the ball B, it is well-known fact that on com-
pact set ⊆ B we have the following uniform-convergence

sup
k
|uε(x)− u(x)| −→

ε→0
0.

Let us denote uε(x) by um(x) for ε = 1
m , m = 1, 2, ... so above becomes

sup
k
|um(x)− u(x)| −→

m→∞
0 (24)

The ball Bk are compactly contained in the original ball B
From the theorem 3.1, we know that for any k=1, 2, ...., there exists mk such
that um(x) is smooth subsolution of (2)
Take the ball Bk+l and write the inequality (11) for

u1(x) = um(x) and u2(x) = up(x)∫
Bk+l

∣∣grad2up − grad2um
∣∣2 hk+l dx

≤
[

1

2
‖up − um‖2L∞ + ‖up − um‖L∞

(
‖up‖L∞ + ‖um‖L∞

)]
×
∫

Bk+l

∣∣∆4hk+l

∣∣ dx (25)

Let us denote

αk+l =

∫
Bk+l

∣∣∆4hk+l

∣∣ dx,
α̂ = inf

x∈Bk+l

hk+l,

then (25) becomes

α̂

∫
Bk+l

∣∣grad2up − grad2um
∣∣2 dx
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≤ αk+l

[
1

2
‖up − um‖2L∞ + ‖up − um‖L∞

×
(
‖up‖L∞ + ‖um‖L∞

)]
(26)

where α̂ 6= 0. Writing the left hand integral for the smaller ball Bk, we have

α̂

∫
Bk

∣∣grad2up − grad2um
∣∣2 dx

≤ αk+l

[
1

2
‖up − um‖2L∞ + ‖up − um‖L∞

×
(
‖up‖L∞ + ‖um‖L∞

)]
(27)

From (24), we have

‖up − um‖L∞
(Bk+l)

−→ 0 as m, p −→∞

so (27) becomes.

lim
m,p→∞

n∑
i=1

∫
Bk

(∂2up
∂x2

i

− ∂2um
∂x2

i

)
dx = 0

The completeness of L2(Bk) ensure the convergence of above sequence. So there
exist a class of measurable functions vk,i(x) ∈ L2(Bk) such that

n∑
i=1

∫
Bk

(∂2um
∂x2

i

− vk,i
)2
dx −→

m→∞
0, k = 1, 2, ...

we extend vk,i(x) trivially outside the ball Bk by 0.
Let us denote

vi(x) = lim
k→∞

sup
x∈D

vk,i, i = 1, 2, ..., n

It can be checked easily that

vi(x) = vk,i

for the ball Bk.
Next we claim that vi(x) represent the weak second order partial derivative
∂2u(x)
∂x2

i
of u(x).

Take ψ(x) an arbitrary function having compact support in B.
Then suppose ψ(x) ⊂ Bk from some k.
We have ∫

B

∂2um
∂x2

i

ψdx =

∫
B

um
∂2ψ

∂x2
i

dx
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for the integers m ≥ mk.
But we have the following convergence

|um(x)− u(x)| −→
m→∞

0 on Bk

and ∥∥∥∥∂2um
∂x2

i

− vi(x)

∥∥∥∥
L2(Bk)

−→
m→∞

0

using these Limits, the above becomes.∫
Bk

vi(x) ψ(x) dx =

∫
Bk

u(x)
∂2ψ

∂x2
i

dx.

This shows that vi(x) i = 1, 2, ..., n are the weak partial derivative of u(x).
Rewriting the inequality (11) for the functions u1(x) = 0 and u2(x) = um(x) for
m ≥ mk+l over the ball Bk+l, we get∫

Bk+l

∣∣grad2um(x)
∣∣2 hk+l(x)dx ≤ 3

2
αk+l ‖um(x)‖2L∞(Bk+l)

Taking limit m→∞, the above becomes∫
Bk+l

∣∣grad2um(x)
∣∣2 hk+l(x)dx ≤ 3

2
αk+l ‖u(x)‖2L∞(Bk+l)

Now restricting the left hand side for the smaller ball Bk, we have∫
Bk

∣∣grad2um(x)
∣∣2 hk+l(x)dx ≤ 3

2
αk+l ‖u(x)‖2L∞(Bk+l)

Now making limit as m→∞, we obtain∫
Bk

∣∣grad2u(x)
∣∣2 h(x)dx ≤ 3

2
α∞ ‖u(x)‖2L∞(B) <∞.

The left hand side of above increases as k increases and also bounded, so it will
have finite limit, i.e∫

B

∣∣grad2u(x)
∣∣2 h(x)dx ≤ 3

2
α∞ ‖u(x)‖2L∞(B) <∞. (28)

which completes the proof. �

Now we prove the inequality for the weak subsolution of fourth order Laplace
equation.

Theorem 3.3. Let ui(x), i = 1, 2 be the continuous weak subsolution of (2),
and also it satisfies

∂2u(x)

∂x2
j

≥ 0 ∀j = 1, 2, . . . , n
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then the following is valid∫
B

∣∣grad2u2(x)− grad2u1(x)
∣∣2 h(x)dx ≤

[
1

2
‖u2(x)− u1(x)‖2L∞(B)

+ ‖(u2(x)− u1(x))‖L∞(B)

×
(
‖u1(x)‖L∞(B) + ‖u2(x)‖L∞(B)

)]
×
∫
B

∣∣∆4h(x)
∣∣ dx (29)

where h(x) is the weight function satisfying (7).

Proof. Take mollification um,i(x), for i = 1, 2 of the continuous weak subsolution
ui(x), for i = 1, 2 respectively.
Since for the ball Bk+l, there exists integer mk+l, such that each function um,i,
for i = 1, 2 is the smooth subsolution in the ball Bk+l, if m > mk+l. Also we
have the following convergence

‖um,i(x)− ui(x)‖L∞(Bk+l)
−→
m→∞

0 i = 1, 2.

Now writing the inequalities the function um,i(x) , i=1,2 and the ball Bk+l , we
get ∫

Bk+l

∣∣grad2um,2(x)− grad2um,1(x)
∣∣2 hk+l(x)dx

≤ αk+l

[
1

2
‖um,2(x)− um,1(x)‖2L∞(Bk+l)

+ ‖um,2(x)− um,1(x))‖L∞(Bk+l)

×
(
‖um,1(x)‖L∞(Bk+l)

+ ‖um,2(x)‖L∞(Bk+l)

)]
(30)

Taking Limit as m→∞ , the latter inequality (30) becomes∫
Bk+l

∣∣grad2u2(x)− grad2u1(x)
∣∣2 hk+l(x)dx

≤ αk+l

[
1

2
‖u2(x)− u1(x)‖2L∞(Bk+l)

+ ‖u2(x)− u1(x)‖L∞(Bk+l)

×
(
‖u1(x)‖L∞(Bk+l)

+ ‖u2(x)‖L∞(Bk+l)

)]
(31)

Again writing the above inequality, the left hand side for smaller ball Bk and
also taking Limit l→∞, we get, we finally obtain∫

Bk

∣∣grad2u2(x)− grad2u1(x)
∣∣2 h(x)dx
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≤ α∞
[

1

2
‖u2(x)− u1(x)‖2L∞(B) + ‖u2(x)− u1(x)‖L∞(B)

×
(
‖u1(x)‖L∞(B) + ‖u2(x)‖L∞(B)

)]
(32)

The above inequalities holds for all Bk, k=1,2,3,...,n. So also true for ball B.
Which completes the proof. �

Conflict of Interests

The authors hereby declare that there is no conflict of interests regarding the
publication of this paper.

References
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