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Abstract. We shall present new oscillation criteria of second order non-
linear difference equations with a non-positive neutral term of the for
∆(a(t)(∆(x(t) − p(t)x(t − k)))γ) + q(t)xβ(t + 1 − m) = 0, with positive

coefficients. Examples are given to illustrate the main results.
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1. Introduction

This paper deals with oscillatory behavior of all solutions of the nonlinear second
order difference equations with a non-positive neutral term of the form

∆(a(t)(∆(x(t)− p(t)x(t− k)))γ) + q(t)xβ(t+ 1−m) = 0. (1)

We assume that
(i) γ, β are the ratios of positive odd integers;
(ii) {a(t)}, {p(t)} and {q(t)} are positive real sequences for t > t0, and 0 <
p(t) < p0 < 1;
(iii) k is a positive integer and m is a nonnegative integer;
(iv) h(t) = t−m+ k + 1 6 t, that is m > k + 1.
We let

A(v, u) =

v−1∑
s=u

1

a1/γ(s)
, v > u > t0,
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and assume that
A(t, t0) → ∞ as t → ∞. (2)

Let θ = max{k,m− 1}. By a solution of equation (1), we mean a real sequence
{x(t)} defined for all t > t0−θ and satisfies equation (1) for all t > t0. A solution
of equation (1) is called oscillatory if its terms are neither eventually positive
nor eventually negative, otherwise it is called non-oscillatory. If all solutions of
the equation are oscillatory then the equation itself called oscillatory.
In recent years, there has been much research activity concerning the oscillation
and asymptotic behavior of solutions of various classes of difference equations see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and the references cited therein. Meanwhile, there
also have been numerous research for second order neutral functional difference
equations, due to the comprehensive use in natural science and theoretical study.
Some interesting recent results on the oscillatory and asymptotic behavior of
second order difference equations can be found in [12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22]. However, it seems that there are no known results regarding the
oscillation of second order difference equations of type (1). More exactly existing
literature does not provide any criteria which ensure oscillation of all solutions
of equation (1). In view of the above motivation, our aim in this paper is to
present sufficient conditions which ensure that all solutions of (1) are oscillatory.

2. Main results

For t > T for some T > t0 we let

µ(t) = a1/γ(t)A(t, T ) and Q(t) =

∞∑
s=t

q(s).

We begin with the following new result.

Theorem 2.1. Let conditions (i) - (iv) and equation (2) hold. If there exists a
positive non-decreasing sequence {ρ(t)} such that

lim sup
t→∞

(
ρ(t)Q(t) +

t∑
s=t2

[
ρ(s)q(s)− γγ

(1 + γ)1+γ

a(t−m+ 1)

(βg(s))γ

(
(∆ρ(s))γ+1

ργ(s)

)])
= ∞, (3)

where

g(t) =

{
1, when β = γ,

c(A(γ−β)/β(t)), when β > γ for some constant c > 0,
(4)

lim sup
t→∞

t−1∑
s=h(t)

Aβ(h(t), h(s))q(s) > 1, when β = γ (5)

and

lim sup
t→∞

t−1∑
s=h(t)

Aβ(h(t), h(s))q(s) > c > 0, when β > γ, (6)

then equation (1) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of equation (1), say x(t) > 0, x(t−
m + 1) > 0, x(t − k) > 0 for t > t1 for some t1 > t0. It follows from equation
(1) that

∆(a(t)(∆y(t))γ) = −q(t)xβ(t−m+ 1), (7)

where y(t) = x(t) − p(t)x(t − k). Hence a(t)(∆y(t))γ is decreasing and of one
sign. That is, there exists a t2 > t1 such that ∆y(t) > 0 or ∆y(t) < 0 for t > t2.
We claim that ∆y > 0 for t > t2. To prove it, we assume that ∆y(t) < 0 for
t > t2. Then

a(t)(∆y(t))γ 6 −c for t > t2,

where c = −a(t2)(∆y(t2))
γ > 0. Thus, we conclude that

y(t) 6 y(t2)− c1/γ
t−1∑
s=t2

a−1/γ(s).

By virtue of equation (2), lim
t→∞

y(t) = −∞. Now, we consider the following two
cases:
Case 1. If x(t) is unbounded, then there exists a sequence {tn} such that
lim
n→∞

tn = ∞ where x(tn) = max{x(s) : t0 6 s 6 tn}. Since tn − k > t0

for all sufficiently large n,

x(tn − k) = max{x(s) : t0 6 s 6 tn − k} 6 max{x(s) : t0 6 s 6 tn} = x(tn).

Therefore, for all large n,

y(tn) = x(tn)− p(tn)x(τ(tn)) > (1− p(tn))x(tn) > 0,

where τ(t) = t− k, which contradicts the fact that lim
t→∞

y(t) = −∞.

Case 2. If x(t) is bounded, then y(t) is also bounded, which contradicts lim
t→∞

y(t) =

−∞. This completes the prove of the claim and conclude that ∆y(t) > 0 for
t > t2.
Next, we have two cases to consider:
(I) y(t) > 0; (II) y(t) < 0, for t > t2.
First assume that (I) holds. In view of equation (7) and x(t) > y(t) , we have

∆(a(t)(∆y(t))γ) 6 −q(t)yβ(t−m+ 1) 6 0. (8)

It follows that

y(t) = y(t2) +

t−1∑
s=t2

(a(s)(∆y(s))γ)1/γ

a1/γ(s)

> a1/γ(t)(∆y(t))

t−1∑
s=t2

a−1/γ(s)

:= µ(t)∆y(t). (9)
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Summing equation (8) from t to u, letting u → ∞ and using the fact that y(t)
is increasing, we have

a(t)(∆y(t))γ >
∞∑
s=t

q(s)yβ(s−m+ 1)

> yβ(t−m+ 1)

( ∞∑
s=t

q(s)

)
:= Q(t)yβ(t−m+ 1). (10)

Suppose that y(t) > 0 for t > t2. Define

w(t) = ρ(t)
a(t)(∆y(t))γ

yβ(t−m)
for t > t2. (11)

Then, it follows that

w(t) = ρ(t)
a(t)(∆y(t))γ

yβ(t−m)
> ρ(t)

( ∞∑
s=t

q(s)

)
. (12)

Now,

∆w(t) = ∆

(
ρ(t)

yβ(t−m)

)
(a(t+ 1)(∆y(t+ 1))γ) + ∆(a(t)(∆y(t))γ)

(
ρ(t)

yβ(t−m)

)
6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)−

(
ρ(t)

ρ(t+ 1)

)
∆yβ(t−m)

yβ(t−m)
w(t+ 1).

(13)
By the corollary of the Keller chain rule, for 0 < β ≤ 1, we have

∆yβ(t−m) = β

∫ 1

0

[hy(g(t−m+ 1) + (1− h)y(t−m)]
β−1

∆y(t−m)dh

≥ β

∫ 1

0

[hy(t−m+ 1) + (1− h)y(t−m+ 1)]
β−1

∆y(t−m)dh

= βyβ−1(t−m+ 1)∆y(t−m), 0 < β ≤ 1,

then using this in (13), we get

∆w(t) 6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)

− β

(
ρ(t)

ρ(t+ 1)

)
yβ−1(t−m+ 1)∆y(t−m)

yβ(t−m)
w(t+ 1)

6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)− β

(
ρ(t)

ρ(t+ 1)

)
∆y(t−m)

y(t−m)
w(t+ 1).

(14)
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And for β > 1 , we have

∆yβ(t−m) = β

∫ 1

0

[hy(g(t−m+ 1) + (1− h)y(t−m)]
β−1

∆y(t−m)dh

≥ β

∫ 1

0

[hy(t−m) + (1− h)y(t−m)]
β−1

∆y(t−m)dh

= βyβ−1(t−m)∆y(t−m), β > 1,

then using this in equation (13), we get

∆w(t) 6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)− β

(
ρ(t)

ρ(t+ 1)

)
∆y(t−m)

y(t−m)
w(t+ 1).

(15)
Thus, by equation (14) and equation (15), we obtain equation (15) hold for all
β > 0. Since (a(t)(∆y(t))γ) is decreasing, we have

∆y(t−m)

∆y(t)
>
(

a(t)

a(t−m)

)1/γ

and
w(t+ 1)

ρ(t+ 1)
6 w(t)

ρ(t)
. (16)

Using equation (16) in equation (15), we obtain

∆w(t) 6 −ρ(t)q(t)+
(

∆ρ(t)
ρ(t+1)

)
w(t+1)−β

(
ρ(t)

ρ(t+1)

)(
a(t)

a(t−m)

)1/γ (
∆y(t)
y(t−m)

)
w(t+

1).
Now,

∆y(t)
yγ/β(t−m)

= ρ−1/γ(t)a−1/γ(t)w1/γ(t) > ρ−1/γ(t)a−1/γ(t)
(

ρ(t)
ρ(t+1)

)1/γ
w1/γ(t+1).

Thus,

∆w(t) 6 −ρ(t)q(t) +
(

∆ρ(t)
ρ(t+1)

)
w(t + 1) − β

a1/γ(t−m)

(
ρ(t)

ρ1+1/γ(t+1)

)
w1+(1/γ)(t +

1)y(γ−β)/β(t−m),

and so,

∆w(t) 6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)

− βρ(t)

a1/γ(t−m)ρ1+1/γ(t+ 1)
w1+1/γ(t+ 1)y(γ−β)/β(t−m).

For the case β = γ, we see that y(γ−β)/β(t) = 1 while for the case β > γ and
since (a(t)(∆y(t)))γ is decreasing, there exists a constant c > 0 such that

(a(t)(∆y(t)))γ 6 c for t > t2.

Summing this inequality from t2 to t− 1, we have

y(t) 6 y(t2) + c1/γA(t, t2),

and thus,

y(γ−β)/β(t) > c(γ−β)/(βγ)A(γ−β)/β(t, t2) := c∗A(γ−β)/β(t, t2),
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where c∗ = c(γ−β)/(βγ). Using those two cases and the definition of g(t), we get

∆w(t) 6 −ρ(t)q(t) +

(
∆ρ(t)

ρ(t+ 1)

)
w(t+ 1)

− βρ(t)

a1/γ(t−m)ρ1+1/γ(t+ 1)
g(t)w(1+γ)/γ(t+ 1). (17)

Setting

B :=

(
∆ρ(t)

ρ(t+ 1)

)
and C :=

βρ(t)

a1/γ(t−m)ρ1+1/γ(t+ 1)
,

and using

Bu− Cu(1+γ)/γ 6 γγ

(1 + γ)γ+1

(
Bγ+1

Cγ

)
,

(see [7]), we have

∆w(t) 6 −ρ(t)q(t) +
γγ

(1 + γ)γ+1

a(t−m)

(βg(t))γ

(
(∆ρ(t))γ+1

ργ(t)

)
.

Summing this inequality from t2 to t− 1 we get

w(t) 6 w(t2)−
t−1∑
s=t2

[
ρ(s)q(s)− γγ

(1 + γ)γ+1

a(s−m)

(βg(s))γ

(
(∆ρ(s))γ+1

ργ(s)

)]
.

Taking into account the equation (12), we find

w(t2) > ρ(t)Q(t) +
t−1∑
s=t2

[
ρ(s)q(s)− γγ

(1 + γ)γ+1

a(s−m)

(βg(s))γ

(
(∆ρ(s))γ+1

ργ(s)

)]
.

Taking the lim sup of both sides in the above inequality as t → ∞, we obtain a
contradiction to the equation(3).
Consider now case (II). If we put z(t) = −y(t) > 0 for t > t2, then

z(t) = −y(t) = p(t)x(t− k)− x(t) 6 p(t)x(t− k),

or

x(t− k) > z(t) or z(t) = x(t+ k).

Using this inequality in equation (1), we have

∆(a(t)(∆z(t))γ) > q(t)zβ(t−m+ k + 1) := q(t)zβ(h(t)). (18)

Clearly, we have ∆z(t) < 0. Now, for t2 6 u 6 v, we may write

z(u)−z(v) = −
v∑

s=u

(a−1/γ(s)(a(s)(∆z(s))γ)1/γ) > A(v, u)(−(a(v)(∆z(v))γ)1/γ),

for t > s > t2, setting u = h(s) and v = h(t) in the above inequality we get

z(h(s)) > A(h(t), h(s))
(
−(a(h(t))(∆z(h(t)))γ)1/γ

)
.

Summing inequality (18) from u = h(t) > t2 to t− 1, we find



246 S. R. Grace, S. Sun, L. Feng, Y. Sui

Z(t) := −a(h(t))(∆z(h(t)))γ

> (−a(h(t))(∆z(h(t)))γ)
β
γ

t−1∑
s=h(t)

Aβ(h(t), h(s))q(s)

= Zβ/γ(t)
t−1∑

s=h(t)

Aβ(h(t), h(s))q(s),

and hence

Z1−β/γ >
t−1∑

s=h(t)

Aβ(h(t), h(s))q(s).

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a con-
tradiction to equation (5) when β = γ and equation (6) when β > γ. This
completes the proof. �
We note that Theorem 2.1 holds when Q(t) < ∞ and the additional term
ρ(t)Q(t) in equation (3) may improves some of the well-known existing results
appeared in the literature. In the case when Q(t) does not exists as t → ∞, we
see that equation (3) can be replaced by

lim sup
t→∞

t−1∑
s=t2

[
ρ(s)q(s)− γγ

(1 + γ)γ+1

a(t−m+ 1)

(βg(s))γ

(
(∆ρ(s))γ+1

ργ(s)

)]
= ∞, (19)

and the conclusion of Theorem 2.1 holds.
For the non-neutral equations, that is, equation (1) when p(t) = 0 and q(t) is
either non-negative or non-positive for all large t, equation (1) is reduced to the
equation

∆ (a(t)(∆x(t))γ) + δq(t)xβ(t+ 1−m) = 0,

where δ = ±1. From Theorem 2.1, we extract the following immediate results.

Corollary 2.2. Let conditions (i)-(iii) and equation (2) hold. If there exists a
positive function ρ(t) and ∆ρ(t) > 0 such that equation (3) holds, then equation
(1,+1) is oscillatory.

Proof. The proof is contained in the proof of Theorem 2.1-Case (I) and hence is
omitted. �
We note that Corollary 2.2 is related to some of the results in [4, 5, 6, 12, 13,
14, 15, 16, 17] and the references cited therein.

Corollary 2.3. Let conditions (i)-(iv) and equation (2) hold. If equation (5)
or (6) holds, then every bounded solution of equation (1,−1) is oscillatory.

Proof. The proof is contained in the proof of Theorem 2.1-Case (II) and hence
is omitted. �
The following examples are illustrative.
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Example 2.4. Consider the neutral equation

∆2

(
x(t)− 1

2
x(t− 3)

)
+ 8x(t− 7) = 0. (20)

Here, k = 3 and m = 8 and so, h(t) = t− 3. All conditions of Theorem 2.1 with
equation (3) be replaced by equation (19) are satisfied and hence equation (20)
is oscillatory.

Next, we present the following interesting results.

Theorem 2.5. Let the hypotheses of Theorem 2.1 hold with ∆ρ 6 0 for t > t0
and equation (3) be replaced by

lim sup
t→∞

[
ρ(t)Q(t) +

t−1∑
s=t0

ρ(s)q(s)

]
= ∞. (21)

Then equation (1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of equation (1), say x(t) > 0, x(t−
k) > 0, x(t−m+ 1) > 0 for t > t1. Proceeding as in the proof of Theorem 2.1,
we conclude that ∆y(t) > 0 for t > t2 and we have two cases to consider: (I)
y(t) > 0 or y(t) < 0 for t > t2.
Case (I). Suppose that y(t) > 0. As in the proof of Theorem 2.1, we obtain (16).
Thus,

∆w(t) 6 −ρ(t)q(t).

Summing this inequality and using equation (10) we arrived at the desired con-
tradiction. �

Example 2.6. Consider the neutral equation

∆2

(
x(t)− 1

2
x(t− 1)

)
+ x(t− 1) = 0. (22)

Here, k = 1 and m = 1 and so, ρ(t) = t. All conditions of Theorem 2.1 with
equation (3) be replaced by equation (21) are satisfied and hence equation (22)
is oscillatory.

In the following theorem we employ different approaches to replace equation (3)
in Theorem 2.1.

Theorem 2.7. Let the hypotheses of Theorem 2.1 hold with γ 6 1, and equation
(3) be replaced by

lim sup
t→∞

[
ρ(t)Q(t) +

t−1∑
s=t0

ρ(s)q(s)− a1/γ(s−m+ 1)(∆ρ(s))2

4βg(s)ρ(s)Q1/γ−1(s+ 1)

]
= ∞. (23)

Then equation (1) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of equation (1), say x(t) > 0, x(t−
k) > 0, x(t−m+ 1) > 0 for t > t1. Proceeding as in the proof of Theorem 2.1,
we conclude that ∆y(t) for t > t2 and y(t) satisfies either (I) or (II) for t > t2.
If (I) holds, then as in the proof of Theorem 2.1, we obtain (17) and using (12)
we get

∆w(t) 6 −ρ(t)q(t) +
(

∆ρ(t)
ρ(t+1)

)
w(t+ 1)

− βρ(t)
a1/γ(t−m+1)ρ1+1/γ(t+1)

g(t)w1+1/γ(t+ 1)

6 −ρ(t)q(t) +
(

∆ρ(t)
ρ(t+1)

)
w(t+ 1)

− βρ(t)
a1/γ(t−m+1)ρ2(t+1)

g(t)Q1/γ−1(t+ 1)w2(t+ 1)

= −ρ(t)q(t)−
(√ βρ(t)

a1/γ(t−m+1)ρ2(t+1)
g(t)Q(1/γ)−1(t+ 1)w(t+ 1)

−
∆ρ(t)
ρ(t+1)

2

√
βρ(t)

a1/γ (t−m+1)ρ2(t+1)
g(t)Q(1/γ)−1(t+1)

)2
+ a1/γ(t−m+1)(∆ρ(t))2

4βg(t)ρ(t)Q1/γ−1(t+1)

6 −ρ(t)q(t) + a1/γ(t−m+1)(∆ρ(t))2

4βg(t)ρ(t)Q(1/γ)−1(t+1)
.

The rest of the proof is similar to that of Theorem 2.1 and hence is omitted. �

Example 2.8. Consider the neutral equation

∆2

(
x(t)− 1

3
x(t− 2)

)
+ x(t− 3) = 0. (24)

Here, k = 2 and m = 4 and so, γ = 1, ρ(t) = t. All conditions of Theorem 2.1
with equation (3) be replaced by equation (23) are satisfied and hence equation
(24) is oscillatory.

Next, we present the following new and easily verifiable oscillation criteria for
equation (1).

Theorem 2.9. Let conditions (i)-(iv) and equation (2) hold. Assume that equa-
tion (5) and

lim sup
t→∞

Aβ(t−m+ 1, t0)Q(t) > 1 (25)

hold when β = γ, and equation (6) and

lim sup
t→∞

Aβ(t−m+ 1, t0)Q(t) > 0 (26)

hold when β < γ, then equation (1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of equation (1), say x(t) > 0, x(t−
k) > 0, x(t−m+ 1) > 0 for t > t1 for some t1 > t0. Proceeding as in the proof
of Theorem 2.1, we conclude that ∆y(t) > 0 for t > t2 and y(t) satisfies either
(I) or (II) for t > t2. If (I) holds, then as in the proof of Theorem 2.1, we obtain
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(9) and (10). Using the facts that σ(t) 6 t is decreasing, we find

w(t) := a(t)(∆y(t))γ > Q(t)µβ(τ(t))(∆y(t−m+ 1))β

= Q(t)µβ(t−m+ 1)(a−β/γ(t−m+ 1))(a(t−m+ 1)(∆y(t−m+ 1))γ)β/γ

> Q(t)µβ(t−m+ 1)(a−β/γ(t−m+ 1))(a(t)(∆y(t))γ)β/γ

= Q(t)µβ(t−m+ 1)(a−β/γ(t−m+ 1))wβ/γ(t),

or

w1−β/γ(t) > Q(t)µβ(t−m+ 1)(a−β/γ(τ(t))

= Q(t)

(
t−m+1∑
s=t2

a−1/γ(s)

)β

= Aβ(t−m+ 1, t2)Q(t).

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a contra-
diction to equation (25) when β = γ and equation (26) when β < γ. The proof
of case (II) is similar to that of Theorem 2.1 and hence is omitted. �

Example 2.10. Consider the neutral equation

∆

(
∆

(
x(t)− 1

3
x(t− 2)

))2

+ x(t− 3) = 0. (27)

Here, k = 2 and m = 4 and so, γ = 2, β = 1. Equation (26) of Theorem 2.5 are
satisfied and hence equation (27) is oscillatory.

For equation (1) with advanced argument, we present the following result.

Theorem 2.11. Let τ(t) > t, conditions (i)-(iii) and equation (2) hold. Assume
that the conditions

lim sup
t→∞

A(t, t0)Q
1/γ(t) > 1, (28)

,

lim sup
t→∞

t−1∑
u=h(t)

(
1

a(u)

t∑
s=u

q(s)

)1/γ

> 1 (29)

hold when γ = β and the conditions

lim sup
t→∞

A(t, t0)Q
1/γ(t) = ∞, (30)

lim sup
t→∞

t−1∑
u=h(t)

(
1

a(u)

t∑
s=u

q(s)

)1/γ

> 0 (31)

hold when β < γ, then equation (1) is oscillatory.
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Proof. Let x(t) be a non-oscillatory solution of equation (1), say x(t) > 0, x(t−
k) > 0, x(t−m+ 1) > 0 for t > t1 for some t1 > t0. Proceeding as in the proof
of Theorem 2.1 and consider the two cases (I) and (II). First, suppose case (I)
holds. From equation (10), we have

(∆y(t))γ >
(
Q(t)

a(t)

)
yβ(t−m+ 1),

or

∆y(t) >
(
Q(t)

a(t)

)1/γ

yβ/γ(t−m+ 1).

Using above inequality in (9), we get

y(t) > µ(t)∆y(t)

> µ(t)

(
1

a(t)

∞∑
s=t

q(s)

)1/γ

yβ/γ(t−m+ 1)

> A(t, t2)Q
1/γ(t)yβ/γ(t),

or

y1−β/γ(t) > A(t, t2)Q
1/γ(t).

Taking lim sup of both sides of this inequality as t → ∞, we arrive at a con-
tradiction to equation (28) when β = γ and equation (30) when β < γ. If (II)
holds, then as in the proof of Theorem 2.1-Case (II), we obtain equation (18).
Summing this inequality from u to t− 1,

(a(t)(∆z(t)))γ − (a(u)(∆z(u)))γ >
t∑

s=u

q(s)zβ(h(s))

or

−∆z(u) >
(

1

a(u)

t∑
s=u

q(s)zβ(h(s))

)1/γ

>
(

1

a(u)

t∑
s=u

q(s)

)1/γ

zβ/γ(h(t)).

Summing this inequality from h(t) > t2 to t− 1, we arrive at a contradiction to
equation (29) when β = γ or equation (31) when β < γ. �

Example 2.12. Consider the neutral equation

∆

(
∆

(
x(t)− 1

3
x(t− 2)

))2

+ 2x(t− 3) = 0. (32)

Here, k = 2 and m = 4 and so, γ = 2, β = 1. Condition (30) and (31) of
Theorem 2.5 are satisfied and hence equation (32) is oscillatory.

We may note that corollaries similar to Corollaries 2.2 and 2.3 can be also drawn
from Theorems 2.5 and 2.7. The details are left to the reader.



Oscillatory behavior of second order nonlinear difference equations 251

3. Conclusion

We present seven sufficient conditions which ensure that all solutions of (1) are
oscillatory. The corresponding examples are given to illustrate the significance
of the results. From this, the oscillation criteria for the n order equation are
similar.
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second order strongly superlinear and strongly sublinear dynamic equations. Com-

munications in Nonlinear Science and Numerical Simulation, 14 (8), 3463–3471.
https://doi.org/10.1016/j.cnsns.2009.01.003

10. Grace, S. R., Agarwal,R. P., Kaymakalan, B. & Sae-jie, W. (2010). Oscillation theorems
for second order nonlinear dynamic equations. Journal of Applied Mathematics and Com-

puting, 32 (1), 205–218. https://doi.org/10.1007/s12190-009-0244-7
11. Grace, S. R., Bohner, M., & Agarwal, R. P. (2009). On the oscillation of second-order

half-linear dynamic equations. Journal of Difference Equations and Applications, 15 (5),

451–460. https://doi.org/10.1080/10236190802125371
12. Grace, S. R., & El-Morshedy, H. A. (2000). Oscillation criteria of comparison type

for second order difference equations. Journal of Applied Analysis, 6 (1), 87–102.
https://doi.org/10.1515/JAA.2000.87



252 S. R. Grace, S. Sun, L. Feng, Y. Sui

13. El-Morshedy, H. A., & Grace, S. R. (2005). Comparison theorems for second order non-
linear difference equations. Journal of mathematical analysis and applications, 306 (1),
106–121. https://doi.org/10.1016/j.jmaa.2004.12.024

14. Liu, X. (2006). Oscillation of solutions of neutral difference equations with a nonlinear
term. Comp. Math. Appl, 52 (3–4), 439-448. https://doi.org/10.1016/j.camwa.2006.02.009

15. Tang, X. H. (2001). Oscillation for nonlinear delay difference equations. Tamkang Journal
of Mathematics, 32 (4), 275–280.

16. Thandapani, E., Liu, Z. S., Arul, R., & Palanisamy S. Raja. (2004). Oscillation and
asymptotic behavior of second order difference equations with nonlinear neutral terms.
Applied Mathematics E - Notes, 4, 59–67. https://doi.org/10.4236/jamp.2017.56104

17. Thandapani, E., Pandian, S., & Balasubramanian, R. K. (2004). Oscillation of solutions

of non- linear neutral difference equations with nonlinear neutral term. Far East Journal
of Applied Mathematics, 15, 47–62. http://dx.doi.org/10.17654/MS104010091

18. Thandapani, E., & Mahalingam, K. (2003). Necessary and sufficient conditions for os-
cillation of second order neutral difference equations. Tamkang Journal of Mathematics,

34 (2), 137–145.
19. Thandapani, E., Mahalingam, K., & Graef, J. R. (2003). Oscillatory and asymptotic be-

havior of second order neutral type difference equations. International Journal of Pure &
Applied Mathematics, 6 (2), 217–230.

20. Yang, J., Guan, X., & Liu, W. (1997). Oscillation and asymptotic behavior of second order
neutral difference equation. Ann. Diff. Equ., 13, 94–106.

21. Yildiz, M. K., & Ogunmez, H. (2014). Oscillation results of higher order nonlinear neutral

delay difference equations with a nonlinear neutral term. Hacettepe University Bulletin of
Natural Sciences & Engineering, 43 (5), 809–814.

22. Zhang, Z., Chen, J. & Zhang, C. (2001). Oscillation of solutions for second order nonlin-
ear differ- ence equations with nonlinear neutral term. Computers & Mathematics with

Applications, 41(12), 1487–1494. https://doi.org/10.1016/S0898-1221(01)00113-4

Said R. Grace
Department of Engineering Mathematics, Faculty of Engineering Cairo University, Orman,

Giza 12221, Egypt.
e-mail: saidgrace@yahoo.com

Shurong Sun
School of Mathematical Science, University of Jinan, Jinan, Shandong 250022, P R China.
e-mail: sshrong@163.com

Limei Feng

School of Mathematical Science, University of Jinan, Jinan, Shandong 250022, P R China.
e-mail: fenglimei1004@163.com

Ying Sui
School of Mathematical Science, University of Jinan, Jinan, Shandong 250022, P R China.
e-mail: suiying4320@163.com


