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Abstract
Protein–ligand interactions are one of the fundamental types of molecular interactions in living
systems. Ligands are small molecules that interact with protein molecules at specific regions on
their surfaces called binding sites. Binding sites would also determine ADMET properties of a drug
molecule. Tasks such as assessment of protein functional similarity and detection of side effects of
drugs need identification of similar binding sites of disparate proteins across diverse pathways. To
this end, methods for computing similarities between binding sites are still evolving and is an
active area of research even today. Machine learning methods for similarity assessment require
feature descriptors of binding sites. Traditional methods based on hand engineered motifs and
atomic configurations are not scalable across several thousands of sites. In this regard, deep neural
network algorithms are now deployed which can capture very complex input feature space.
However, one fundamental challenge in applying deep learning to structures of binding sites is the
input representation and the reference frame. We report here a novel algorithm, Site2Vec, that
derives reference frame invariant vector embedding of a protein–ligand binding site. The method is
based on pairwise distances between representative points and chemical compositions in terms of
constituent amino acids of a site. The vector embedding serves as a locality sensitive hash function
for proximity queries and determining similar sites. The method has been the top performer with
more than 95% quality scores in extensive benchmarking studies carried over 10 data sets and
against 23 other site comparison methods in the field. The algorithm serves for high throughput
processing and has been evaluated for stability with respect to reference frame shifts, coordinate
perturbations and residue mutations. We also provide the method as a standalone executable and a
web service hosted at (http://services.iittp.ac.in/bioinfo/home).

1. Introduction

A protein performs its function by interacting with ligands and other small molecules. Protein–ligand
interaction plays an important role in biological systems. A binding site is a concavity on the surface of a
protein, composed of several amino acids whose side chains interact with a ligand molecule. Electrostatic and
chemical complimentarity, aromatic stacking and other forms of interactions between atoms of a concavity
and a ligand molecule result in chemical binding. One protein may have a dozen concavities and some of
which may be functional resulting in moonlighting behaviour. A major reason for functional similarity
between proteins is the similarity of their binding sites and hence interaction patterns with ligand molecules.
Binding site comparison is one of the major methods in the field of structural bioinformatics and drug
discovery [1, 2].

A main source for structure of a binding site is the structure of its protein in terms of the 3D coordinates
of all of its thousands of atoms. The structure of a protein is determined through a variety of means
including experimental mechanisms such as x-ray crystallography or nuclear magnetic resonance and
analytical methods such as sequence or structural alignment to known structures [3]. Today about 167 000-
high-quality protein structures are available in the Protein Data Bank [4]. This volume of data has enabled
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use of machine learning methodology for comparison of protein–ligand binding sites [5, 6]. Traditional
machine learning methodologies over the last two decades require careful feature engineering and sometimes
involve hand crafted features and atomic motifs. However for scaling to handle thousands of features
originating in data such as medical texts, protein function, pathway information and other sources, deep
learning methodologies have come into the picture [7–9].

There are two types of site comparison methods: alignment-dependent methods [10–14] and
alignment-free methods [15–19]. Alignment dependent methods provide detailed information on the
atomic mapping of protein structures where as alignment free methods output a similarity score. Several
methods have come till date for the purpose of binding site comparison [10–28, 28–31]. A brief description
of these methods is provided in (table 1).

Pairwise alignmentbased methods need a pair of sites as input. Representative points in 3D are mapped
between the sites and a superimposition is carried out. PocketAlign [11] is an example of alignment based
approach. Results of alignment provided detailed information on atomic mapping and can be visualized in
standard applications. These algorithms also emit a matching score on number of atoms or residues matched
between the sites.

While alignment is a detailed work for a given pair of sites, dealing with several million pairs is space and
time complexity wise hard. A precomputed database of alignments and scores are stored to serve for a long
list of known sites [31]. However this approach does not scale well for querying a large number of novel sites.
Especially in protein design experiments for synthetic enzymes and pharmacophore based generation of
binding sites [32]. Moreover in the context of pipelines of drug discovery processes involving screening
against thousands of sites for side effect free ligand selection [33], more than a detailed alignment based
approach, a quick and accurate filter is desirable.

The advantage of a vector descriptor based algorithm is its ability for use in diverse contexts. Queries for
identification of similar binding sites reduces to proximity search in their vector descriptor space. Classifying
a pair of binding sites into a category is achieved through concatenation of vectors and processing the fused
vector through machine learning classifiers.

In the space of pairwise methods, PocketMatch [19] has been fastest [34] and competitively accurate
across diverse data sets. PocketMatch considers a binding site structure as composed of amino acids
represented by three point-types Cα,Cβ and Cγ (centroid of side chain atoms). The 20 amino acids are
grouped into five chemical categories. All pair distances between the points are then mapped into 120 bins
corresponding to point-chemical-type pairs and sorted within each bin. This is the shape descriptor or finger
print for a binding site.

However, PocketMatch bins are variable in length being proportional to the number of atoms and
characteristic chemical composition of a site. Though the representation serves the purpose in pairwise
scanario, the variable vector is not suitable for proximity queries. In this work Site2Vec, we mathematically
extend the idea of PocketMatch to generate a fixed size vector which can serve as a locality-sensitive-hash
descriptor.

In Site2Vec, a sliding window of numbers runs through each physico-chemical-bin of PocketMatch. The
slides are all clustered for each physico-chemical-bin to form anchor points. For any new site, sliding window
is run for all the bins and a histogram of cluster membership is derived. These histograms are then encoded
using auto-encoder to form a 200-dimensional vector descriptor.

The algorithm has been benchmarked against 23 methods on 10 data sets. On average Site2Vec stood first
in its performance for classification of sites provided in recent extensive benchmarking paper [34]. The
algorithm is also robust to atomic coordinate perturbations characteristic of any site, single amino acid
mutations and reference frame changes. The algorithm is fast which computes a vector descriptor at the rate
of 3 to 5 sites per second, making it suitable for high throughput processing.

There has been recent work that employs deep learning for vectorization of binding sites [30]. In this
method a voxel representation of 3D space featuring interaction energy of 14 atom types of a binding site is
passed through a convolutional neural network (CNN) to obtain a phyisico-chemical shape descriptor. As
CNNs are sensitive to reference frame, in this algorithm, a pre-processing step is carried out to determine the
three axes using principal component analysis. However one major drawback of the algorithm is, as CNN is a
supervised learning algorithm, it requires site categories beforehand and is not suitable in a large scale
scenario across hundreds of categories and sub-categories. Moreover, the vector generation process is highly
time consuming with processing abilities at the rate of 15 to 20 in one hour.

In summary, we report here a novel algorithm Site2Vec for vector representation of binding sites which is
fast, reliable and robust, suitable for high throughput binding site analysis in structual bioinformatics and
drug discovery fields.
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Table 1. Brief descriptions of methods for binding site comparison.

Method Description

Apoc [10] Binding sites are aligned based on matching residue groups between sites and carrying
out site alignment.

ASSIST [26] It is a geometric hashing based comparison technique, hashes pairs of residues, taken
from input structures into a 3D hash table based on residue types and distances from
geometric centers. Similarity exercise is performed through alignment of hash tables.

DeepDrug3D [30] A binding site is encapsulated in a 3D voxel-grid which is passed through a convolu-
tional neural network to map to a vector descriptor. The method falls under supervised
learning and requires categories of sites as input.

eMatchSite [25] A sequence-order independent algorithm for binding site comparison. Physico-chemical
and structural characteristics of protein residues and their interactions with small
molecules are captured by the spatial distribution of residues and ligand binding prob-
abilities.

FuzCav [15] An alignment-free comparison method that represents a binding site as a 4833 integer
vector of counts of the number of pharmacophoric triplets formed by Cα atoms.

IsoMIF [13] A Molecular interaction-based binding site comparison method where a binding site is
represented by a molecular interaction field descriptor. Interactions between atoms of
residues of a site and a ligand in a protein ligand complex are input to the method.

KRIPO [18] Quantifying the similarities at the level of sub-pockets in a binding site based on phar-
macophore representation. The presence or absence of sub-pockets is then then trans-
lated to derive a fingerprint.

Morris and co-
workers [28]

A binding site is represented by spherical harmonic coefficients about its centroid.

Nakumara and
co-workers [16]

In their method, a binding site is represented by a 11-dimensional vector, reducing
the fingerprint obtained by FuzCav [15] using principal component analysis on 4833
dimensional space.

PocketAlign [11] A pair of binding sites are structurally superimposed based on matching residues for
their local shape descriptors between sites.

PocketMatch [19] Represents the binding site as lists containing distances between Cα, Cβ and centroid of
atoms of side chain and categorized into physico-chemical property bins. A pair of sites
are compared for similarity by matching distance elements between corresponding bins.

Probis [12] In this method a site is represented as a fully connected graph whose vertices are atoms.
Two sites are compared based on maximal common sub-graph detection algorithms.

RAPMAD [17] A histogram-based comparison method where several sets of pseudo centers represent
a binding site. Distances between pseudo centers are calculated and mapped into histo-
grams. These histograms represent binding sites which are compared for similarity.

SiteAlign [23] A binding site is represented by a sphere containing physico-chemical properties on its
surface. Site residues are projected on to this sphere. Two sites are compared by align-
ment of their sphere approximations.

SiteHopper [21] It calculates a 3D shape representation of the active site colored by the chemical proper-
ties of the residues defining the active site. These active site representations are aligned
and assessed for shape and chemical similarity.

SiteEngine [22] Each amino acid in the site is represented by a pseudo-centre with physico-chemical
label. two sites are superimposed for matching pseudo centers.

SitesBase [31] Alignment based algorithm that superimposes atoms between a pair of sites. Alignments
are pre-computed and served through a database.

SOIPPA [24] Represents protein structures by Delaunay tessellation of Cα atoms characterized by
their geometric potentials. Two structures are aligned by determining maximal weight
common sub-graph.

TM-align [14] An Alignment dependent approach where a protein structure is treated as position of Cα

atoms of residues. Two structures are aligned by superimposing their backbone atoms.
VolSite [27] A site is approximated by fitting a box into the pocket and lining the surface of the box

with pharmacophoric properties. Two sites are compared through alignment of these
box representations.

2. Methods andmaterials

Site2Vec is a mathematical enhancement to the PocketMatch [19] algorithm. In PocketMatch, pairwise
distances are considered between representative points of a binding site. These distances are then put into
bins corresponding to chemical types of pairs of site residues. The 20 amino acids are categorized into five
group:s Group-0:(A,M,V,I,L,G,P); Group-1:(K,R,H); Group-2:(D,E,Q,N); Group-3:(Y,F,W);
Group-4:(C,S,T) based on hydrophobic, hydrophilic and aromatic ring properties. Each amino acid of the
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site is represented by points - Cα,Cβ and Cγ for the centroid of the side-chain (including Cβ). The
PocketMatch algorithm takes as input a pair of sites. For a given site a variable dimensional descriptor is
generated and for two sites, a similarity score is computed. As with any other pairwise method, limitations of
PocketMatch include difficulty in serving proximity queries. For instance, if the query is to identify all sites
that are proximal to a given novel nucleotide-binding site, it has to resort to several thousands of pairwise
comparisons. The Site2Vec algorithm attacks the descriptor variability issue in PocketMatch. Vector
generation in Site2Vec involves sliding window based processing of PocketMatch bins, clustering and
auto-encoder based deep neural network derived embedding, the steps of which are described in the sections
that follow.

2.1. Site2Vec: Sliding window-based encoding
Site2Vec takes as input 3D representation of a binding site and encodes it into a d-dimensional vector
representation (figure 1).

(a) Representation of atoms in a binding site

• Let e be a binding site in dataset Γ and A(e) be the atoms of e.
• A(e)= {(xi,yi,zi,ϕi,ψi)|i ∈ [1..N]}
• where,

• xi,yi,zi :3D coordinates of A(e).
• ϕi∈αβ γ.

• α : Cα

• β : Cβ

• γ : Centroid of the side chain.
• ψi∈[1..k]

• where, k = 5 [19] 20 amino acids were considered in 5 groups – Group-0:(A,M,V,I,L,G,P);
Group-1:(K,R,H); Group-2:(D,E,Q,N); Group-3:(Y,F,W); Group-4:(C,S,T).

• N is number of atoms

(b) Calculation of pairwise distances among the atoms of binding site

• D(e)= (dist(i, j), type(i, j)|∀i, j ∈ [1..N]
• where,

• dist(i, j) :
√ ∑

p∈{x,y,z}
(A(e)[i].p−A(e)[j].p)2

• type(i, j) : A(e)[i].ϕ_A(e)[j]ϕ_A(e)[i].ψ_A(e)[j].ψ
• such that,

• α_β ≡ β_α
• α_γ ≡ γ_α
• β_γ ≡ γ_β
• ψa_ψb ≡ ψb_ψa(∀ψa ̸= ψb)

(c) Grouping of distances

• Let |m| be the number of groups.
• ∀m ∈ {x[1]|x ∈ D}

• Lm(e) = [x[0]|x ∈ D,x[1] =m]∧ (∀a< b)→ Lm[a]≤ Lm[b]

(d) Sliding a sliding window of size ξ over the group of distances (calculated in the previous step)

• Sξm(e) = [Lm(e)[i : i+ ξ]|1≤ i≤ |Lm(e)| − ξ+ 1]

(e) Creating a bag of features.

• Sm = {Sξm(e)|e ∈ Γ(Dataset)}
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(f) Quantization

• Om = Kmeans(Sm,k) (where k is the number of clusters)

(g) Mapping of each list (groups) to a histogram

• ∀e∈Γ
• Cm(e) = [Om.nearest(s)|s ∈ Sξm(e)]
• Hm(e) = hist(Cm(e))
• where,

• nearest(.) returns nearest cluster number [35].
• hist(.) function generates histogram of cluster numbers.

(h) Feeding histogram to an auto-encoder [36], results in d dimensional vector encoding

• Sξm,d(e) = Ψ(Hm(e),θ∗)
• where,

• Ψ: is an auto-encoder
• θ∗ : argmin

θ

∑
e∈Γ

∥Ψ(Hm(e))−Hm(e)∥2

• Sξm,d(e): d-dimensional vector representation of binding site e using auto encoderΨ.

2.1.1. Training process
In Site2Vec, a sliding window (refer step d) passes over the list representation of binding sites (refer step c)
that generates equal length slices of distances of Cα, Cβ and γ (refer step d) and the slices of distances are
mapped to k clusters such that each slice maps exactly one cluster (refer step g). The default setting of this
practice includes the size of sliding window ξ= 10 (refer step d) and the number of clusters k= 10 (refer step
f). The default dimension of vector descriptor of binding site is d= 200 (refer step h) where a protein–ligand
binding site is represented asm number of lists wherem= 120 [19] (refer step d).

A 1D auto-encoder deep neural network is trained that results in d dimensional vector encoding of
binding sites (refer step h). The auto-encoder consists of four hidden layers, so a total of six layers, including
input and output layers followed by the ReLU activation function. The configuration of the auto-encoder is
1200× 1000× 800× 600× 400× 200. The network is trained on a batch size of 16 with a learning rate of
0.0001. The setup mentioned above is the default configuration used in the study.

2.2. Simple mean-variance based vector representation
In the previous section 2.1, we have mentioned that each binding site is represented as a d-dimensional
vector. In an intermediate step (step c) in section 2.1, a site is described am groups of distances between
atoms. The first simple approach is to compute mean and variance for each of the groups mentioned in step
c and generate am-dimensional vector. The pseudo-code of this mean-variance based method is described in
Algorithm 1.

Algorithm 1Mean-variance method

Input:e be a binding site.
Output:ev: Vector representation of the binding site.

1: eµ = [MEAN(Li(e))]
|m|
i=1 (Li, same as step c in section 2.1)

2: eσ = [VARIANCE(Li(e))]
|m|
i=1 (Li, same as step c in section 2.1)

3: ev = eµ · eσ

2.3. Uniform-Site2Vec: Uniform distribution of centroids based binding site encoding method
In section 2.1, Site2Vec method is discussed and in step f , K −means clustering algorithm [37] is used for
grouping of Sm (refer step e in 2.1) in k clusters. Another simple and time-effective approach is to generate
uniformly k pseudo centers in ξ space that represent k clusters. The rest of the steps as well as the training
process (2.1.1) are same as in 2.1. This version of the method we call Uniform-Site2Vec.

2.4. Discretized distance and histogram-based binding site representationmethod
In this approach, distances between Cα, Cβ and γ (Step b) are discretized into seven intervals (table 2).
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Table 2. Discretization of distances between atoms into seven intervals [15]

Interval Distance range(in Å)

1 [0, 7.6)
2 [7.6, 10.1)
3 [10.1, 12.3)
4 [12.3, 14.3)
5 [14.3, 16.8)
6 [16.8, 20.0)
7 [20.0,∞)

Table 3. Description of data sets used in [34] for large scale evaluation of methods for binding site comparison.

Data set Description

D1 Structures having identical sequences
D1.2 Structures with identical sequences and similar ligands
D2 NMR structures.
D3 Discrimination between binding sites having different physicochemical properties
D4 Discrimination between binding sites having different physicochemical and geometrical properties
D5 Kahraman dataset [43]
D6 Barelier dataset [44]
D7 Binding site within known set of proteins

The distance elements within each PocketMatch based bin (refer step b and c)) are mapped to these
intervals and histogram of counts of number of elements in each interval (table 2) are computed. And finally,
for each group (Lm(e)), the histogram of the interval number is generated. Concatenation of these
histograms for all the groups is considered a vector representation (Algorithm 2).

Algorithm 2 Discretized distance and histogram-based method

Input:e be a binding site.
Output:eBv : Vector representation of binding site.
1: B= [β1,β2, . . . ,β7]

2: Xi(e) = [β|∃β ∈B: βk ≤ Li(e)[j]< βk+1, where k ∈ (1,6)]|Li(e)|j=1

3: X(e) = [Xi(e)]
|m|
i=1

4: eBv = [hist(Xi(e))]
|m|
i=1\(hist(.) returns histogram of bin numbers.)

2.5. Benchmarking datasets andmethods
Site2Vec algorithm has been evaluated on 10 different datasets and 23 existing methods for binding site
comparison. The first study involves benchmarking of Site2Vec against 21 methods and seven datasets
reported in [34]. The second study involves the evaluation of the algorithm on ApocS3 Dataset [10]. The
third study involves the evaluation of Site2Vec on a data set of 2249 binding sites covering a class of five types
of sites [42]. The fourth study involves the evaluation of the algorithm against another deep-learning based
method in the literature [30].

2.5.1. Benchmarking on ProSPECCTs datasets and methods
Site2Vec has been evaluated against 21 methods on seven datasets based on [34].

Each of the methods are described in (table 1). The datasets are described in (table 3).

2.5.2. PLIC: protein–ligand interaction clusters
PLIC stands for Protein–ligand interaction clusters. It is a relational database that categorizes the
ligand-binding sites based on different attributes [42]. The database mentioned above contains 67 550
unique protein–ligand binding sites which are divided into 10 854 groups based on pocket shape, types of
residues, atomic contacts, and binding energy. Among these binding site groups, five groups that have more
than 300 binding sites have been extracted for evaluating this method as any machine learning model
requires a sufficient amount of data to learn each class properly. The first group has 537 binding sites. The
second, third, fourth, and fifth have 513, 473, 384 and 342 binding sites respectively.

2.5.3. ApocS3 Dataset
ApocS3 dataset is composed of subject and control data which consists of sites from 2090 and 21, 660 unique
protein chains from PDB, respectively [10]. There are 38 066 pairs of binding sites in subject set (positive
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Figure 1. Steps of Site2Vec for vector encoding of binding sites. Example of binding sites are in PDB id 1EFA [38] and 1KFA [39].
The illusion is created by MOL∗ [40] and RCSB PDB [41].

pairs), and 38 066 pairs of binding sites in the control set (negative pairs). Subject set corresponds to known
similar sites and control set corresponds to known dissimilar sites.
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2.5.4. Comparison against nucleotide and heme binding sites
TOUGH-C1 dataset compiled by [45] consists of nucleotide and heme binding sites. This data set consists of
1556 nucleotide pockets and 556 heme-binding sites. We have used this data set for benchmarking of
Site2Vec with respect to [30] which is another recent study on using convolutional neural networks for
binding site classification.

2.6. Evaluation technique
A two class clarification algorithm can be evaluated on standard metrics such as precision, recall, accuracy
and AUC [46]. AUC stands for area under the curve of a graph plotted against true positive and false positive
rates of prediction of a classifier at various thresholds. The performance of binding site comparison and
classification methods is represented by the receiver operating characteristic (ROC) curve [47]. Area under
the curve (AUC) of ROC is a standard quality assessment metric. ROC curve plots true positive rate (TPR)
with respect to false positive rate (FPR) of a classifier about several threshold values on its confidence score.
In the ROC curve, TPR is plotted on the Y-axis and FPR is plotted on the X-axis. The TPR and FPR are
defined below:

TPR=
TP

TP+ FN

and

FPR=
FP

FP+TN
.

Besides the ROC curve, there are other measuring tools like Accuracy, Precision and Recall that are also used
to evaluate the performance of protein–ligand binding site comparison methods. These metrics are described
as

Accuracy=
TP+TN

TP+ FP+TN+ FN

Precision=
TP

TP+ FP

Recall=
TP

TP+ FN

where TP is the number of true positives, FP is the number of false positives, TN is the number of true
negatives and FN is the number of false negatives. In this exercise of benchmarking against other methods
[15, 16, 30] we have used AUC as a quality assessment metric. The state of the art methods given in [34]
provide a similarity score between a pair of sites which is used to compute ROC curve.

2.7. Run time evaluation
In this study, we have computed the run time performance of Site2Vec and compared it against [30]. The run
time is computed on an Intel Xeon workstation, having CPU E5-2640 and with 2.40 GHz, 40 cores and
125GB RAM and Ubuntu 16.04.5 LTS is installed. The site comparisons have happened in a serial manner.

3. Results

Site2Vec algorithm has been evaluated on 10 different datasets and several methods for binding site
comparison. The first study involves benchmarking of the method against 21 methods and seven datasets
reported in [34]. The second study involves evaluation of the algorithm on ApocS3 dataset[10]. The third
study involves the evaluation of the method on a data set of 67 550 binding sites covering a class of five types
of sites [42].

The fourth study involves the evaluation of the algorithm against another deep-learning based method in
the literature [30].
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3.1. Benchmarking against existing binding site comparisonmethods on ProSPECCTs datasets
The Site2Vec model is trained on whole PLIC dataset [42] and represents a binding site as a 200-dimensional
vector. For each of the ProSPECCTs Datasets [34], Site2Vec vector is generated for each site. For a pair of
sites, the corresponding vectors are fused to result in a concatenated vector. The fused vector is then used in
classification tasks. For finding similarity, each dataset is divided into two halves randomly. A data-driven
classifier is trained by one half. The classifier is tested by the remaining half of the data and AUC of ROC
curve measures performance. Our approach is compared to 21 different binding site comparison methods
mentioned in ProSPECCTs. For all the previous methods, the AUC scores are directly obtained from [34]
without having to run the methods locally again. Given that Site2Vec is a vector embedding generator, it
needs to have train and test sets for application in a classification scenario. To this end, we have considered
each data set provided in [34] and split it into train and test sets. A classifier (random forest [48] having 100
trees) is trained on the train set and evaluated for AUC value on the test set. Instead of single random split of
train and test sets, we have randomly split the data set into two halves 50 times and computed the average
AUC value.

Dataset D1 consists of structures having identical sequences that bind to different ligands. It has 13 430
similar pairs and 92 846 dissimilar pairs. Dataset D1.2 evaluates sensitivity to the binding sites with identical
sequences and similar ligands. Our proposed approach achieved AUC scores of 1 and 0.94 on D1 and D1.2,
respectively. Probis [12], SMAP [49], TM-align [14] have also performed very well and got AUC of 1 on both
datasets. From the AUC scores of 1 and AUC 0.94, we can conclude that Site2Vec is robust method for the
structural definition of binding sites.

Dataset D2 measures the sensitivity with respect to the pocket flexibility of Nuclear Magnetic Resonance
(NMR) structures. Site2Vec has scored AUC of 1 which concludes that it is sensitive to binding site flexibility.

Two decoy datasets D3 & D4 are compiled to measure the difference between nearly similar sites differing
by physicochemical properties (D3) and both physicochemical and geometrical properties by performing five
mutations as mentioned in ProSPECCTs [34]. Site2Vec scores better (AUC 0.99) than the other 21 methods.
Hence, we conclude that our Site2Vec is robust in handling mutation as well.

Next, dataset D5 is compiled by [43] and has 10 000 pairs of binding sites for comparison. On this data
set, Site2Vec achieves an AUC of 0.86 which is highest among other methods (table 4). Dataset D6, compiled
by [44], comprises of protein–ligand binding sites with identical ligands. On dataset D6, using default
random forest classifier with 100 trees and unlimited depth, our approach performs moderately by scoring
AUC of 0.53 where KRIPO [18] outperforms all other methods, including Site2Vec with an AUC of 0.73.
However using Gradient Boosting Classifier on this data set, we obtain an AUC value of about 0.75. These
experiments clearly indicate that by doing a hyper parameter grid search, Site2Vec vectors can be used to
improve classifier accuracy and AUC metrics.

Lastly, dataset D7 is compiled to measure the recovery of known binding site similarities within a set of
diverse proteins. There are only 115 positives and 56 284 negatives in this data set. It has heavy bias towards
negative data set. Site2Vec achieves an AUC of 0.66, which is lower than most pocket matching algorithms
when default random forest classifier is used. However, when Ada Boost Classifier is used with 100 trees, the
AUC value boosts up to 0.80. We can therefore infer that Site2Vec vectors can be considered along with
machine learning model hyper parameters to result in high quality scores.

On most datasets, Site2Vec is outperforming other existing methods. The benchmarking study supports
the claim that vectorization approach is robust and reliable vectors are generated out of binding sites in
Site2Vec. In cases where a random forest classifier was not suitable, an alternative ensembling method such as
Ada Boost or Gradient Boost methods with appropriate parameter settings have resulted in high AUC scores.
This exercise infers that Site2Vec vectors are of good quality and can be used in classification scenarios with
appropriate machine learning model selection through hyper parameter search.

3.2. Evaluation of quality of vector representation on APOCS3 Dataset
ApocS3 dataset [10] consists of 38,066 pairs of binding sides in subject (positive pairs) as well as 38,066 pairs
of sites in control (negative pairs) set. The positive data denotes known set of similar sites and the negative
data denotes known set of dissimilar sites.

Using Site2Vec, vector fingerprints of all 23 750 binding sites are generated. To find a similarity between
two sites, the whole dataset (Subject and Control dataset) is divided into two halves. One half is used as a
training data, and the other half is treated as test data such that both train and test sets have an equivalent
amount of subject and control data. The pair of binding sites in the training data are fed to a classifier
(random forest classifier containing 1000 trees) to train the similarity between two ligand-binding sites, and
test data is used to predict the similarity score. The performance is measured by receiver operating
characteristic (ROC) curve and its corresponding area under the curve (AUC) score.
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Table 4. AUC values for 21 existing site similarity methods and Site2Vec on ProSPECCTs datasets.

Method D1 D1.2 D2 D3 D4 D5 D6 D7 Average AUC across data sets

Site2Vec∗ 1.00 0.94 1.00 0.99 0.99 0.86 0.53 0.66 0.87
SiteHopper [21] 0.98 0.94 1.00 0.75 0.75 0.81 0.56 0.77 0.82
SiteEngine [22] 0.96 1.00 1.00 0.82 0.79 0.57 0.55 0.86 0.82
SiteAlign [23] 0.97 1.00 1.00 0.85 0.8 0.57 0.44 0.87 0.81
SMAP [49] 1.00 1.00 1.00 0.76 0.65 0.54 0.68 0.86 0.81
KRIPO [18] 0.91 1.00 0.96 0.6 0.61 0.77 0.73 0.85 0.80
Shaper [27] 0.96 0.93 0.93 0.71 0.76 0.65 0.54 0.75 0.78
Shaper(PDB) [27] 0.96 0.93 0.93 0.71 0.76 0.64 0.54 0.75 0.78
VolSite/Shaper [27] 0.93 0.99 0.78 0.68 0.76 0.58 0.71 0.77 0.78
FuzCav [15] 0.94 0.99 0.99 0.69 0.58 0.54 0.67 0.77 0.78
FuzCav(PDB) [15] 0.94 0.99 0.98 0.69 0.58 0.54 0.65 0.77 0.77
TM-align [14] 1.00 1.00 1.00 0.49 0.49 0.62 0.59 0.88 0.76
Cavbase [50] 0.98 0.91 0.87 0.65 0.64 0.57 0.55 0.82 0.75
VolSite/Shaper(PDB) [27] 0.94 1.00 0.76 0.68 0.76 0.56 0.5 0.72 0.74
IsoMIF [13] 0.77 0.97 0.7 0.59 0.59 0.81 0.62 0.87 0.74
PocketMatch [19] 0.82 0.98 0.96 0.59 0.57 0.6 0.51 0.82 0.73
ProBiS [12] 1.00 1.00 1.00 0.47 0.46 0.55 0.5 0.85 0.73
TIFP [20] 0.66 0.9 0.91 0.66 0.66 0.63 0.55 0.71 0.71
RAMPAD [17] 0.85 0.83 0.82 0.61 0.63 0.52 0.6 0.74 0.70
Grim [20] 0.69 0.97 0.92 0.55 0.56 0.61 0.45 0.7 0.69
Grim(PDB) [20] 0.62 0.83 0.85 0.57 0.56 0.58 0.45 0.64 0.64
TIFP(PDB) [20] 0.55 0.74 0.78 0.56 0.57 0.53 0.56 0.66 0.62

Figure 2. ROC plot and its corresponding AUC values measuring the performance of different methods and our method on
APOCS3 dataset [10]. The x-axis is false positive rate, and the y-axis is true positive rate.

We compared our proposed method with alignment dependent methods (i) TM-align [14] and Probis
[12] and (ii) alignment independent methods: Fuzcav [15], a method by Nakumara and co-workers [16] and
PocketMatch [19]. Brief description of these methods can be found in (table 1).

The measured ROC curves are displayed in (figure 2). Our proposed method achieved an area under the
curve of 0.983 and is outperforming all other methods discussed in this study. FuzCav (AUC 0.96),
PocketMatch (AUC of 0.95), Nakamura method (AUC of 0.91) are also performing better on the ApocS3
dataset. Alignment dependent binding site similarity methods Probis has AUC of 0.70 and TM-align achieves
AUC of 0.65. This result provides an insight that the quality of vector encoding of binding sites computed by
Site2Vec is acceptable and it is noted that our method is capable of doing multiple comparisons of binding
sites at a single point of time. The proposed method converts binding sites to vectors in d-dimensional space
and compares vector representations in that multidimensional space.

3.3. Benchmarking against DeepDrug3D
Another method available today that employs deep neural networks for binding site embedding is
DeepDrug3D [30]. This is a classification algorithm that uses convolutional neural networks (CNN) to
classify a given data set of categories of binding sites. In the process, it generates a vector embedding once the
training is complete for a given binding site. In this method, a binding site is represented as a voxel
representation with a 3D grid. For each grid point, interaction energy is calculated for 14 atom types. The
voxel-grid is then passed through a convolutional neural network which regresses over a loss function based
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Table 5. Performance measure of Site2Vec and other binding site comparison methods on the ApocS3 dataset.

Method Accuracy (threshold) AUC Precision Recall

Site2Vec 0.93(0.5) 0.98 0.94 0.93
FuzCav 0.90(0.5) 0.96 0.88 0.91
PocketMatch 0.86(0.1) 0.95 0.92 0.79
Nakamura method 0.84(0.5) 0.91 0.80 0.89
Probis 0.61(0) 0.70 0.90 0.59
TM-align 0.62(0.4) 0.65 0.89 0.28

Table 6. Performance analysis of Site2Vec and Deepdrug3D to classify the binding sites on PLIC data set.

Method Accuracy AUC

K-NN on Site2Vec 0.97 0.990
Decision tree on Site2Vec 0.95 0.976
Random forest on Site2Vec 0.98 0.992
DeepDrug3D 0.96 0.991

on category labels of the input sites. As with any CNN, the method is sensitive to input representation and
reference frame. To address this, the authors use a pre-processing step where principal component analysis
(PCA) is carried out to determine X, Y and Z axes and align the site and translate the origin to the centroid
of the site.

However, fundamental difference between DeepDrug3D and Site2Vec is, the former is fundamentally a
classification technique that requires categories of binding sites in the data set. Site2Vec is a vector
embedding technique that does not require categories of binding sites to generate vector representation. A
plain vector embedding generator has clear advantages over fixed classifiers as it scales to several thousands
of sites across diverse categories in dynamic pipeline processing scenarios.

The first benchmarking we did was on PLIC [42] data set for both AUC scores and the second exercise
was on TOUGH-C1 data set [45]. We can very clearly see that Site2Vec is faster at scale (about 3400 times)
than DeepDrug3D and performs better or at par with the latter method.

3.3.1. Performance on PLIC data set
Comparison studies are carried out against another deep learning based method Deepdrug3D [30] on the
same data set. figure3 indicates the ROC curve for the PLIC dataset for both the methods. We can observe
that both the methods have obtained very high AUC of above 0.99.

In addition to a random forest classifier, other classifiers are also considered while performing the
evaluation process. K-nearest neighbor classifier and Decision tree [51] are used to assess the performance of
vector representation of Site2Vec. Table 6 shows the accuracy, area under the curve of ROC plot of Site2Vec
using different classifiers and Deepdrug3D on the PLIC dataset. We can observe that Site2Vec has slightly out
performed [30] on this data set. The Site2Vec algorithm comes with a very clear advantage of ultra fast
execution speed compared with [30]. It is at least 3400 times faster for vector generation. The main reason
why [30] is slow compared to Site2Vec is, it is a CNN based method which is fundamentally a classification
approach. It requires full level of training to be able to generate a vector embedding. Whereas in Site2Vec,
absolute representation of site as in [19] is used followed by a normalization step of clustering and
auto-encoder to generate generate embedding which is faster at scale.

3.3.2. Performance on TOUGH-C1
The TOUGH-C1 dataset [45] has four sub-sets: nucleotide-, heme-, steroid- and control-binding pockets.

In this benchmarking exercise, heme-binding sites are treated as positive class data, and nucleotide sites
are considered a negative class. The whole dataset of TOUGH-C1 is divided into 70% of training data and
30% test data. Site2Vec is used to generate vector fingerprint from the binding site structure, and a classifier
(random forest; number of trees is 100) is used to classify protein–ligand binding sites using their vector
form. The performance is measured using the ROC curve. The resultant ROC is shown in figure 4. Site2Vec
has got AUC of 0.92, and DeepDrug3D achieved an AUC of 0.89. Table 7 gives more insight into the
performance of Site2Vec and Deepdrug3D on the TOUGH-C1 dataset from which we can infer that Site2Vec
has performed well heme and nucleotide binding sites of the TOUGH-C1 dataset. The TOUGH-C1 dataset
[45] has two other sub-data sets, called control and steroid sets on which [30] has been tested. We chose to
not evaluate against these sub-data sets as we felt it is not required in the context of a large scale evaluation
already happened against [34]. In [34], Site2Vec, has out performed several other algorithms and has been
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Figure 3. ROC plot for evaluating the proposed method and Deepdrug3D to classify the protein–ligand binding sites into five
groups. The x-axis represents the False positive rate, and the y-axis denotes true positive rate.

Figure 4. ROC plot for evaluating of Site2Vec and Deepdrug3D to classify protein–ligand binding sites. The x-axis represents the
False positive rate, and the y-axis denotes true positive rate.

Table 7. Performance measure of Site2Vec and DeepDrug3D on the classification of nucleotide- and heme-binding sites.

Method Accuracy AUC Precision Recall

Site2Vec method 0.90 0.92 0.88 0.71
DeepDrug3D 0.84 0.89 0.85 0.89

the top performing algorithm. Moreover, the amount of time requirement by DeepDrug3D [30] takes several
days to weeks on [34] benchmarking data sets to carry out any rigorous large scale study.

3.4. Comparison of variant of alternative vectorizations of Site2Vec on TOUGH-C1 Dataset
The idea of this exercise is to assess different vectorization alternatives under Site2Vec problem formulation.
Once distance elements are available in 120 bins, vectorization can happen using any of the approaches as in
section 2. We have used TOUGH-C1 data set [45] to compare within Site2Vec formulation and decide on
which vector generation variant is promising. We have used nucleotide and heme binding sites as two
categories against which tested Site2Vec internal variations.

Here, heme-binding sites are treated as positive class data, and nucleotide sites are considered as negative
class. The whole dataset is divided into 70% of train data and 30% of test data. From the binding site
structures, methods described in section 2, are used to generate vector signatures and then classifiers are used
to classify the sites using the vector representations of ligand-binding sites. Table 8 reports the performance
of binding site vector encoding methods, and the performance is measured using accuracy and area under
ROC. Apart from the performance measure, the time required to encode binding sites by different proposed
methods is also calculated and the average time taken by each method is listed in table 8. It is observed that
Site2Vec using PLIC [42] as clustering data set has out performed other variants. Based on this exercise we
have set default Site2Vec configuration to use clustering model for sliding window vectors from PLIC data set.
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Table 8. Performance measure of different encoding methods on the classification of nucleotide- and heme-binding sites.

Method Accuracy AUC Precision Recall Avg. Time

Site2Vec method 0.90 0.92 0.88 0.71 0.32 s
Mean variance method 0.81 0.83 0.67 0.61 0.09 s
Uniform-Site2Vec 0.88 0.90 0.84 0.71 0.39 s
Discretized distance method 0.86 0.90 0.87 0.62 0.08 s

Table 9. Run Time analyses of Site2Vec and other binding site comparison algorithms for comparison binding sites.

Method Avg. Comparison time(s)

Pocket Match 0.009 s
Site2Vec∗ 0.03 s
TM-Align 0.33 s
Probis 1.99 s

Table 10. Run Time analyses of Site2Vec and DeepDrug3D.

Method Avg. run time(s)

Site2Vec∗ 0.34 s
DeepDrug3D 1 228.24 s

3.5. Run Time analyses
In this exercise we have estimated time of execution of the Site2Vec algorithm and compared against other
methods in the state of the art. Apart from site vector quality benchmarking exercises, In this exercise, 30
structures were randomly chosen from a data set by Kahraman and co-workers [43] and running times were
calculated on Site2Vec PocketMatch [19], TM-align [14] and Probis [12]. Brief descriptions of the above
methods can be found in (table 1). After performing this experiment (table 9), it is found that among all the
methods studied here as well as Site2Vec, PocketMatch is the most computational cost-efficient method. On
average, PocketMatch takes 0.009 s to compare pairs of binding sites where Site2Vec consumes average 0.03 s
for comparison. TM-align and Probis compare two bind sites, on average 0.33 s and 1.99 s, respectively. We
can observe that Site2Vec is fastest in single site vector embedding generation methods in these methods and
data set.

Deepdrug3D [30] follows a different approach for classifying the binding sites. It uses 3D voxel to
represent a binding site and this voxel is fed into CNN for classification. Another benchmarking exercise is
carried out to measure the time taken to convert binding sites into vector forms by Site2Vec and voxels form
by Deedrug3D. In this study, twenty binding site is taken from [45]. Deepdrug3D is computationally very
expensive method with respect to run time. It takes on an average of 1 228.24 s and Site2Vec is taking 0.34 s
to encode a binding site. Site2Vec is about 3400 times faster than [30] on this data set. Both computational
cost measure exercises are performed on Intel Xeon workstation, details mentioned in section 2.7.

4. Discussion

4.1. Data visualization
Site2Vec is an algorithm that generates vector embedding for a binding site. It is different from any pairwise
comparison method which takes two sites as input and compute a score. The advantage of a pure vector
embedding generator method is its usefulness as a locality sensitive hashing function. Proximity queries for
binding sites in the vector embedded dimensional space would correspond to similar binding sites. To
evaluate the quality of the vector representation, we have considered PLIC data set [42] and generated vectors
for each of the sites. The data set has 5 categories of ligands. The 200 dimensional vectors hence generated
using Site2Vec are then projected onto a 2-dimensional space and plotted for visual inspection. We have used
t-distributed stochastic neighbor embedding (t-SNE) [52] for the projection purpose.

We can observe (figure 5) that similar sites have occured in proximal locations. As can be seen from the
colour of the points. Sites belonging in same class have same colour. This experiment supports the hypothesis
that the vector embeddings generated by Site2Vec capture spatial proximity well. It is the first novel locality
sensitive hashing function in the state of the art in the space of binding site vectorization algorithms.
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Figure 5. 2D t-SNE visualization of vector embedding of binding sites of PLIC dataset labeled based on groups.

4.2. Metrics for comparison of binding site pair
Protein–ligand binding site comparison methods use different techniques to compare sites. The metric used
for computing similarity is closely tied to the way data is represented. For instance alignment based method
such as PocketAlign [11] uses the number of mapped residues between sites and SitesBase [31] uses matching
atoms between sites. In case of alignment free methods, PocketMatch [19] uses number of matching distance
elements between sites, RAPMAD [53] uses the Jensen–Shannon divergence between histograms of distance
elements between sites and FuzCav [15] uses intersection of fingerprint vectors.

In Site2Vec method, cosine similarity (equation (1)) and Euclidean distance (equation (2)) between
vector embeddings are used metrics for similarity and dissimilarity respectively. Cosine similarity captures
directionality of the sites where as Euclidean distance only looks at magnitude of separation between two
sites and algebraically both are related quantities given angle between the two vectors. These metrics are used
in sensitivity analysis of the method:

cosineSimilarity=
A.B

∥ A ∥∥ B ∥
=

∑d−1
i=0 AiBi√∑d−1

i=0 A
2
i

√∑d−1
i=0 B

2
i

(1)

where A and B are the vector signatures of two binding sites; a(A,B) are the Euclidean distance between A
and B; and d is the dimension dimension of vector embedding of the binding site.

The cosine similarity ranges between -1 and 1. The value -1 implies that two vectors are opposite, and 1
indicates that the two vectors are the same and similarity value of 0 indicates orthogonality. The intermediate
values indicate intermediate similarity.

Euclidean distance between the pair of vector signatures of binding sites is used to calculate the similarity
between two binding sites:

e(A,B) =

√√√√d−1∑
i=0

(Ai −Bi)2 (2)

where A and B: Vector signatures of two binding sites; e(A,B) are the Euclidean distance between A and B;
and d is the dimension of vector representation of the binding site.

These two comparison techniques are used in the sensitivity analysis of this method.

4.3. Sensitivity Studies
The Site2Vec algorithm is evaluated on three types of perturbations of sites for assessing its sensitivity. The
first evaluation is to perform sanity test with respect to rotation. The second study is is to induce
perturbations in atomic coordinates and evaluate robustness. The third study is to assess the robustness of
vectorization with respect to minor changes in residue compositions. These three types of perturbations can
be expected in any naturally occuring binding sites across protein families and to account for effects of
molecular dynamics in protein structures in a living system.

4.3.1. Sensitivity analysis based on reference frame rotations
Translation and rotation of coordinates of atoms in a binding sites do not affect the relative positions and
topology of atoms. Any site representation algorithm should be robust to these types of trivial reference
frame changes. Any algorithm that directly consumes a binding site as input, faces two challenges. The first
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Figure 6. (a) Euclidean distance between vectors of rotated and original heme-1a2sA binding sites. The x-axis is the number of
rotation, and the y-axis denotes euclidean distance. (b) Sensitivity analysis based on perturbation of atomic coordinates. The
x-axis denotes the amount of perturbation, and the y-axis is the average cosine similarity value. (c) Sensitivity analysis based on
perturbation of centroid of side-chain atoms. The x-axis denotes the amount of perturbation, and the y-axis is the average cosine
similarity value. (d) Sensitivity analysis based on residue type perturbation. This is a histogram where x-axis denotes the cosine
similarity values, and the y-axis corresponds to the number of perturbed sites.

challenge is the values of coordinates based on the reference frame. The second challenge is input order of
atoms.

A deep learning-based method, DeepDrug3D [30], uses PCA [54] to first determine three axes and then
re-orient and re-position points about the axes and their center. This step is performed as a pre-processing
step to normalize the input.

Methods based on pairwise distances between atoms do not get affected by reference frame changes in
the input. Fuzcav [15] is one method that enumerates triplets of Cα atoms and computes the histogram of
number of such triplets resulting in a 4833-dimensional vector. This method is robust to reference frame
variations. The method by Nakumara and co-workers [16] improves on top of Fuzcav by dimensionality
reduction using PCA.

The Site2Vec algorithm is also a pairwise distance-based method there by inherently robust to reference
frame changes in the input. We have considered this as a first and sanity test to compute differences between
vectors generated for various rotations of a given site. As expected, the vectors are identical irrespective of
changes in reference frame for a given site. We chose the heme-1a2sA binding site and generated 250 random
rotations of the same. Euclidean distances between vectors of the original site before rotation and those of
rotated versions are all zero as desired (figure 6(a)). This experiment demonstrates reference frame
invariance of Site2Vec as required.

4.3.2. Sensitivity analysis based on perturbation of coordinate of atoms of the binding site
Any vectorization method should be robust to minor perturbations in coordinates of atoms of a binding site.
In any crystal structure, it is not uncommon to see minor changes in side-chain conformations of the same
types of sites across different proteins. In this regard, we have carried out a sensitivity analysis of Site2Vec
with respect to perturbations to atomic coordinates of the site.

Natural sites are not expected to be perturbed much due to constraints on bond lengths and atomic
forces. This poses a challenge in obtaining a natural dataset of sites with atomic perturbations. However,
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synthetically introducing atomic perturbations introduces violations of bond lengths and atomic radii
constraints. Using molecular dynamics solvers to generate perturbations is also a costly process when whole
protein needs to be considered for structural constraints. In order to overcome these challenges and
introduce a practically feasible way of studying robustness of vectorization to atomic perturbations, we have
considered Cα,Cβ and γ coordinates directly (Algorithm 3). Vectors are computed for each of the perturbed
versions of a given binding site and are compared against the vector of the unperturbed site. It is expected
that the cosine similarities are all high between the vectors and only decrease slowly with respect to the
amount of perturbation.

We have considered a Heam binding site (1a00-HEM) as an example to assess sensitivity to perturbations
from the PLIC dataset. As many as 1000 random perturbations are generated using (Algorithm 3) between
1 Å to 4 Å uniformly in steps of 1 Å. It has been observed that most of the perturbed sites demonstrated very
high cosine similarity to the unperturbed sites figure 6(b).

It is also interesting to see how the side chain orientations alone would affect the similarity of vectors
between unperturbed and perturbed variations. However, molecular dynamics simulation of the entire
protein to generate valid side-chain orientations is a costly process and also does not generate many
variations. We have devised an equivalent experiment to fix Cα and Cβ and varied only Cγ to roughly
capture movements of side-chain atoms. Given that Site2Vec considers centroid of the side chain atoms,
much of the variations in atomic coordinates would be averaged out and the movement of centroid is only
expected to be very small. We have carried out perturbation studies of Cγ coordinates by generating as many
as 1000 sites for the Heam binding sites (1a00-HEM). The results of the comparison of the unperturbed
vector to the perturbed variations resulted in very high cosine similarity values as desired (figure 6(c)). While
only Cγ points are considered, the N will be≈N/3 in (Algorithm 3). This experiment demonstrates that
Site2Vec is tolerant to positional perturbations of site atoms under natural dynamic conditions of a living cell
by capturing similarities between sites even after mild conformational changes.

Algorithm 3 Algorithm for perturbation of coordinates

1: Given a net amount of perturbation ρ
2: Let N be total number of points in a site (including Cα,Cβ and Cγ)

3: ρ2 =
∑i=N

i=1 |si−s ′i |
2

N (where si and s
′
i are i

th coordinates of original and perturbed site respectively)
4: |si − s ′i |=

√
ρ2/3

5: Let p= si and q= s ′i , then, qx ≈ px ± ρ/
√
3 where (px,qx denotes X coordinates)

6: Similarly for other coordinates as well

4.3.3. Sensitivity analysis based on perturbation of residue types of the binding site
This is the third type of perturbation study where the robustness of site vectorization is studied with respect
to minor changes in the chemical composition of a binding site. To this extent, we have considered single
residue type perturbation as a way of inducing chemical perturbation. First, we have fixed the coordinates of
atoms and randomly picked a residue in a binding site and changed its type to generate a perturbed site.
From the perturbed site vector descriptor is freshly computed based on Site2Vec algorithm. Cosine similarity
is computed between the vectors of the unperturbed site and each of the perturbed sites. For each residue,
one of the 20 amino acids is chosen as its new type. The base work for Site2Vec algorithm uses [19] to
fundamentally group residues into five groups. To arrive at a ballpark number on how many perturbations
would result in a distinct chemical type, we can assume each group to represent≈ 4 amino acids. A random
type perturbation falls in one of these five groups and in a number of 1000 perturbations, we can expect≈
200 distinct sites. We have observed that most of the type perturbed sites possessed high cosine similarity to
the original site as desired (figure 6(d)).

4.4. Site2Vec as an onlineWeb Service
The Site2Vec algorithm is provisioned as both a stand-alone version and as a web service at
(http://services.iittp.ac.in/bioinfo/home). The stand-alone version can be downloaded and locally installed
to run in a python environment. The web services accepts one or more PDB structures as inputs and
computes binding sites for all the groups of HETATM records corresponding to ligands in the file.
Alternatively the user may also specify a PDB id which is internally downloaded or reused on the server side.
The service maintains a session for which a user waits and downloads the site vectors. The web service
provides for search option to retrieve similar binding site for a given site, more details can be seen from the
manual in the web portal. Backend of web ported is developed by Python3 and numpy, Keras, Tensorflow
packages are used and Python Flask is used as a web framework in the backend, and the front end uses
bootstrap.js libraries to facilitate the interactive interface.
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5. Conclusion

In this work, we have presented Site2Vec, a machine learning-based, reference frame invariant,
ligand-independent method for vector embedding of protein–ligand binding sites. This method encodes a
protein–ligand binding site into d-dimensional vector. The vector representation of the site captures both the
chemical and structural properties of binding sites. The quality of vector representations of protein–ligand
binding sites is measured in terms of robustness to physical and chemical perturbations of a site and
reference frame changes. The vector embedding mechanism serves as a locality sensitive hashing function
where proximal vectors have similar meaning. We have demonstrated the ability of the vector embeddings to
capture site similarity as proximity in their vector dimensional space on the PLIC data set. The algorithm has
been rigorously benchmarked against on 23 methods on 10 different data sets on which Site2Vec stood the
top performer in terms of average AUC quality scores. Site2Vec is a highly configurable algorithm on how it
generates vector embeddings and we have evaluated configurations on TOUGH-C1 data set and
benchmarked for determining best working default parameters. The algorithm is evaluated on TOUGH-C1
nucleotide and heme sites, ProSPECCTs and ApocS3 and it performed among the top in terms of accuracy
and AUC scores. The Site2Vec algorithm also out performed another deep learning alternative today [30] in
terms of speed by about 3000 times and out performed or matched its performance on reported data sets.
The Site2Vec algorithm is an unsupervised methodology which does not require a pair of sites as it is an
computes encoding for a given site in-silos. Such an approach is desirable today for site arithmetic where
proximity of sites in vector space and relative positioning is novel, with immense applications in structual
bioinformatics and drug discovery. We report here one of the very first deep learning-based vector
embedding methods, Site2Vec, in the state of the art backed by thorough benchmarking exercises and quality
assessments.
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