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ABSTRACT

In this paper, we investigated the behaviors of some cosmological parameters as a function
of redshift z using some dark energy models namely intermediate, logamediate and emergent
scenarios of the universe adopting their cosmological scale factors in the frame work of the
teleparallel gravity or the f(T ) theory. By considering the present value of cosmological
parameters, the behaviors of deceleration, jerk, kerk and lerk parameters and equation of state
showed that the universe has an accelerated expansion behavior described by phantom-like
behavior. The stability of the model was studied using the squared speed of sound v2

s verifying that
the model is stable. Finally, we discussed the generalized second law of thermodynamics’s (GSLT)
validity. The positive behavior of the entropy indicates that the GSLT is verified. These results of
functions are in agreement with the recent observational data.
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1 INTRODUCTION

The universe has an expanded acceleration
behavior. The observational data have been
obtained for various cosmological experiments
of the type Ia supernovae (SNeIa), Large
Scale Structure (LSS), X-ray experiments, the
Wilkinson Microwave Anisotropy Probe (WMAP),
the Planck satellite, the Sloan Digital Sky Survey
(SDSS) and Cosmic Microwave Background
(CMB) anisotropy radiation, which indicated that
our universe has an accelerated expansion
behavior [1, 2, 3, 4, 5, 6, 7]. The accelerated
expansion represents the present day problems
in cosmology. Mainly, a few classes of models
exist to explain the accelerated expansion nature
of the universe at the present time [8, 9, 10].

Cosmological constant model represents the
simplest explanation for the accelerated behavior
of the universe and has the Equation of State
(EoS) parameter (ωΛ = −1), which should
be assumed to clarify the theoretical candidate
suggested to explain the observational evidence
of accelerated expansion of the universe. We
face two main problems described as follows: the
fine-tuning and the cosmic coincidence problems
[8, 10].

Some theoretical models considered dark energy
(DE) as natural dynamic like [11] quintessence
(−1 ≤ ωΛ ≤ 1) [12, 13], phantom (ωΛ ≤ −1)
[13], Chaplygin gas (ωΛ < −1/3) [14] and k-
essence (ωΛ < −1/3) [13]. In fact, some models
of dark energy based on the holographic principle
[15] that is described by two different types
of holographic [8, 10, 16] and agegraphic dark
energy [17]. Another interesting suggestions to
DE mysterious is the modified gravity which was
proposed after the failure of general relativity
(GR). GR is considered a very successful theory
used to understand the accelerated expansion
behavior of the universe [18, 19]. GR is a new
set of gravity theories that passes many tests of
solar system and astrophysical successfully [20].
The modified gravity theories are important for
the late accelerated expansion of the universe
which has been studied before by many authors

[8]. Some of the familiar models of the modified
gravity are f(T ), f(R) and f(G), where T is the
torsion scalar, R is the Ricci scalar curvature and
G is the Gauss-Bonnet invariant [9, 10, 21, 22].

In the present work, we studied the f(T )
modified gravity which represents an alternative
theory for GR, defined on the Weitzen-bock
non-Riemannian manifold which works only with
torsion. This model is constructed by Einstein to
make an unification inter the electromagnetism
and gravity [20]. The f(T ) is a general form
of the modified teleparallel gravity (TG), where
f(T ) = T [18, 19, 23, 24].

We investigate the modified f(T ) gravity models
of dark energy using three different scale factors.
We determine some cosmological parameters to
explain the acceleration behavior of the universe.
Finally, we compare our results with present
observations obtained at varying time points. The
paper is organized in the following sections. In
section 2, we study the modified gravity model
of f(T ). In section 3, we define three various
scenarios of the scale factors. We investigate the
accelerated expansion behavior of the universe
using the cosmological parameters are defined
in section 4, the EoS parameter is represented
in section 5, checking the stability of model in
section 6 and the validity of the GSLT, which is
presented in section 7. Finally, The results are
discussed in section 8.

2 THE MODEL
In the framework of f(T ) theory, the action S is
represented by [25]:

S =
1

16πGN

∫ √
−gd4x(f(T ) + Lm), (2.1)

where GN indicates the Newton’s gravitational
constant, g is the determinant of the metric
tensor, f(T ) is general differentiable function of
the torsion and Lm is the Lagrangian density of
the matter inside the universe.
According to Eq.(2.1), the action S of
a homogeneous and isotropic universe is
described from the geometrical point of view,
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the Friedmann Lemaitre Robertson Walker
(FLRW) model is represented by the Friedman-
Robertson-Walker (FRW) metric [26]:

ds
2

= −dt2 + a
2
(t)(

dr2

1− kr2
+ r

2
(dθ

2
+ Sin2(θ)dϕ

2
)), (2.2)

where a(t) represents the scale factor, r
indicates the radial component of FRW metric
and t is the cosmic time. Furthermore, the term
of r2(dθ2 +Sin2(θ)dϕ2) is the solid angle element
squared and the quantities θ and ϕ are the usual
azimuthal and polar angles that are assumed in
the range of 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π [16].

The expansion factor of the universe can be
assumed as a Taylor series at the present time
to [26]:

a(t) = ao(1 +

∞∑
n=1

An(to)

n!
(Ho(t− to))n), (2.3)

where An = a(n)

aHn , n ∈ N and a(n) is the nth

derivative of the scale factor with respect to the
time scale [15, 26].

In this work, we construct the f(T ) form which
includes constant, linear and non-linear of torsion
T , is given by [9, 20],

f(T ) = T+
6(n− 1)u

u− 1
(− T

6n2
)u/2 +

√
−T√
6n

, (2.4)

where u, n are constants and T is the torsion
scalar [10]. Different ranges of n indicate different
epoch of the evolution of universe such as 0 <
n ≤ 1 and n = 2

3
represent radiation and matter

dominated decelerated phases. The accelerated
behavior is realized when n > 1 [9]. The Hubble
parameter is H = n

t
and the torsion scalar is

assigned to [9]:

T (t) = −6H2 =
−6n2

t2
. (2.5)

The Hubble horizon is taken as the infrared (IR)
cut-off, while the holographic dark energy density
is found to be [10] :

ρΛ = 3c2M2
pL
−2, (2.6)

where Mp = (8πGN )−
1
2 ≈ 1018 GeV indicates

the reduced Planck mass and L is the IR cut-off
size [27]. Gao et al. [28] took the Ricci scalar
as an IR cut-off, where the Ricci dark energy is

proportional to the Ricci scalar [27]. The Ricci
scalar curvature of FLRW universe is appointed
[10]:

R = −6

(
Ḣ + 2H2 +

k

a2

)
, (2.7)

where k is the curvature parameter, which can
be ∓1 and 0, respectively, yielding an open,
a closed, or a flat FRW universe. Let us
consider DE component is proportional to the
inverse of squared Ricci scalar curvature radius
as described in the holographic principle term
[28], where energy density ρ of Ricci dark energy
(RDE) model for a flat FLRW universe is given by,
for k = 0 [10],

ρ = 3c2
(
Ḣ + 2H2

)
. (2.8)

By differentiating Eq.(2.8), the time derivative of
dark energy density is described by [10]:

ρ̇ = 3c2
(
··
H + 4ḢH

)
, (2.9)

where c2 is a positive constant.

3 DIFFERENT SCENARIOS
OF THE SCALE FACTORS

3.1 Intermediate Inflation
The expansion of universe is expressed in
exponential form. The intermediate expansion
scale factor is defined as [29, 30]:

a = eBt(z)n , (3.1)

where B > 0 and 0 < n < 1.

3.2 Logamediate Inflation
We investigated another generalized form of
inflation, which called ‘logamediate inflation’. The
scale factor has the form [30]:

a = eA(Logt(z))n . (3.2)

where A > 0 and n > 1.
We clarified some calculations to the behavior of
higher-order characteristics for the logamediate
inflation.
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Fig. 1. The behavior of ainter(z) as a function of z for the intermediate inflation, for n = 5
(black-solid), n = 5.2 (blue-dashed) and n = 5.4 (red-dashed)
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Fig. 2. The behavior of alog(z) as a function of z for the logamediate inflation, for n = 5
(black-solid), n = 7 (blue-dashed) and n = 9 (red-dashed)
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Fig. 3. The behavior of aemerg(z) as a function of z for the emergent inflation, for n = 5
(black-solid), n = 5.2 (blue-dashed) and n = 5.4 (red-dashed)
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3.3 Emergent Inflation
The Emergent Inflation presents a framework of
discussions for suggestions if whatever process
caused the universe to come into being, preferred
the high-symmetry state of the Einstein static
model to any less ordered state [31]. For
the emergent universe, the scale factor can be
chosen as [32]:

a = ao
(
λ+ eµt(z)

)n
, (3.3)

where ao, λ, µ and n are positive constants
[10, 33],

1. ao > 0 for the scale factor a to be positive.

2. a > 0 or n > 0 for expanding model of the
universe.

3. a < 0 and n < 0 imply big bang singularity
at t = −∞.

4. λ > 0 to avoid any uniqueness at finite
time (big rip).

In the next sections, we are going to establish the
expressions of some cosmological parameters
that is necessary to describe the behavior of the
considered different scenarios of scale factors.

4 COSMOLOGICAL
PARAMETERS

The higher-order characteristics of the universe
could be related to the accelerated expansion
behavior.

The Hubble parameter is derived from [15, 34]:

H =
ȧ

a
. (4.1)

The deceleration parameter is given by [15]:

q = − 1

H2

··
a

a
. (4.2)

The jerk parameter is [15]:

j =
1

H3

···
a

a
. (4.3)

The kerk or snap parameter is [15]:

κ = − a4

aH4
. (4.4)

The lerk parameter is [15]:

l =
1

H5

a[5]

a
. (4.5)

The general form of these parameters which is
denoted by xi can be expressed by [34]:

xi =
(−1)i+1ai

aHi
= (−1)i+1 a

iai−1

ȧi+1
. (4.6)

where i-th indicates the order of the derivative
with respect to the cosmic time t and i is just
a power. Eq.(4.2) is the universal acceleration
can be quantified through a dimensionless
cosmological function. For q < 0, it describes
the accelerated universe. While for q ≥ 0, it
is simplified for either decelerated or expanded
universe at a ∝ t. The dimensionless third
time derivative of the scale factor with respect to
cosmic time is defined in Eq.(4.3), it is known as
“jerk parameter” and also “statefinder parameter”.
Eq.(4.4) has the fourth time derivative of scale
factor. While Eq.(4.5) is the fifth time derivative
of scale factor [15, 34].
It’s well known that the relation between cosmic
time and redshift z is [35]:

t(z) =
2

((z + 1)2 + 1)Ho
. (4.7)

The present time to at z = 0 can be obtained from
the relation:

to =
1

Ho
. (4.8)

4.1 Intermediate Inflation
Adopting Eq.(4.2), Eq.(4.3), Eq.(4.4) and Eq.(4.5)
for the intermediate inflation, we obtain these
behaviors as shown in Fig. 4:

In Fig. 4, we represent the evolution of q, j, κ and
l for different values of n. In Fig. 4a, we notice
that the deceleration parameter (q) has a slight
decreasing behavior at negative level (q < 0) for
all n values. Consequently, this result indicates
that our universe is in continuous accelerating
expansion.

Fig. 4b shows that the jerk parameter (j) has
a positive increasing behavior against the red-
shift z for three values of n. For n =
5, the jerk parameter is j ' 4.17349 ×
1019 at z ∼ 0.05 and j ' 6.53741 × 1019 at
z ∼ 0.1, showing a slow increasing behavior.
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Fig. 4c displays the kerk parameter (κ) which has
a negative decreasing behavior for all values of n.
For n = 5, the black-solid line from κz=0.05 '
−3.56705 × 1030 to κz=0.1 ' −7.16964 × 1030

tends to be a constant rate of deceleration.
Adopting n = 5.2 (blue-dashed) and n = 5.4
(red-dashed), we notice a decreasing behavior
for κ < 0.

As evident from Fig. 4d that the
lerk parameter (l) has an increasing behavior at
positive level. For n = 5, we find the black-solid
line from lz=0.05 ' 2.03249 × 1041 to lz=0.1 '
5.242× 1041 tends to be zero. For n = 5.2 (blue-
dashed) and n = 5.4 (red-dashed), the behavior
is found to be increased for l > 0.

4.2 Logamediate Inflation
The behaviors of the cosmological parameters
are presented in Fig. 5:

The parameters q, j, κ and l that expressed in
Fig. 5 versus the red-shift z. We notice from Fig.
e that a decreasing behavior at negative level as
obtained from SNeIa data for all n values. The
negative level of q < 0 indicates the universe
has an accelerated behavior and from qz=1 '
−0.524361 to qz=3 ' −0.812034 show a slowly
decreased behavior.

Fig. f has an increasing behavior (j > 0) for
three values of n. Values of n = 7 (blue-dashed)

and n = 9 (red-dashed) show a tiny increased
behavior and tend to be constant.

In Fig. g, we obtain a decreasing behavior
remains negative (−1 < κ < 0) for all values of n.
Fig. h displays an increasing behavior at positive
level for the values of n = 7 (blue-dashed) and
n = 9 (red-dashed), i.e., l > 0. For the value of
n = 5 (black-solid), the behavior decreases from
lz=1 ' −0.000199579 to lz=2 ' −8.85769× 10−6

and begins in increasing at lz'2.1 ' 5.09981 ×
10−7.

4.3 Emergent Inflation

The cosmological parameter in Fig. 6 has the
following behaviors:
The evolution of q, j, κ and l parameters as a
functions of red-shift z is shown in Fig. 6. From
Fig. i, we notice a very small decreasing behavior
where q < 0, indicating a continuous accelerating
behavior of the universe.

For the jerk parameter in Fig. j, we also have an
increasing behavior for three values of n.
Fig. k presents a negative decreasing behavior,
where κ < −1 for all positive values of n.

The behavior of l parameter as a function of
redshift z in Fig. l is increasing at positive level,
i.e., l > +1 for different values of n, from z = 0 to
z = 4.
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Fig. 4. The behavior of (a) deceleration, (b) jerk, (c) kerk and (d) lerk parameters as a function
of red-shift z for the intermediate inflation, for n = 5 (black-solid), n = 5.2 (blue-dashed) and

n = 5.4 (red-dashed)
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Fig. 5. The behavior of (e) deceleration, (f) jerk, (g) kerk and (h) lerk parameters as a function
of red-shift z for logamediate inflation when n = 5 (black-solid), n = 7 (blue-dashed) and n = 9

(red-dashed)
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Fig. 6. The behavior of (i) deceleration, (j) jerk, (k) kerk and (l) lerk parameters as a function
of z for the emergent inflation, for n = 5 (black-solid), n = 5.2 (blue-dashed) and n = 5.4

(red-dashed)
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5 THE EQUATION OF STATE
PARAMETER

We derive the expression of EoS parameter for
the non-interacting and the interacting DE. We
start considering the non-interacting case.

The continuity equations are given by [36]:

˙ρtot + 3Hρtot (ωtot + 1) = 0, (5.1)

where ωtot is the total EoS parameter. If there
is no interaction between DE sectors, the two
energy densities ρ and ρm of DE and dark matter
(DM) are derived as [36]:

ρ̇+ 3Hρ (ωΛ + 1) = 0, (5.2)

ρ̇m + 3Hρm = 0, (5.3)

where ωΛ is the EoS parameter of DE and the
EoS parameter of DM is ωm=0 due to pm = 0.

Inserting Eq.(2.8) and Eq.(2.9) in Eq.(5.2), we
obtain the non-interacting EoS parameter ωΛnon:

ωΛnon = −

(
··
H + 4ḢH

)
3H
(
Ḣ + 2H2

) − 1. (5.4)

For the interacting case, the continuity equations
are expressed as [36]:

ρ̇+ 3Hρ (ωΛ + 1) = −Q, (5.5)

ρ̇m + 3Hρm = Q, (5.6)

where Q is an arbitrary function of cosmological
parameters, called the interaction term and
is chosen here as Q = 3δHρm [10, 16],
where δ is the dimensionless coupling between
DE and DM and is known as a transfer
strength or an interaction parameter. The
cosmological observational data obtained from
different cosmological experiments determined
the coupling parameter between DM and DE,
that must be assumed to be small positive
value and be in agreement with the experiments.
Observations of CMB radiation suggest that the
interaction term is 0 < δ < 0.025. This result
is consistent with the interaction term δ must be
taken in the range of (0, 1) in the limiting case of

δ = 0 which leads to the non-interacting model
[16].

By solving the continuity equation for ρm, see
Eq.(5.6), the energy density of DM is defined as
[10]:

ρm = ρmoa
−3(1+δ), (5.7)

where ρmo indicates the present time value of ρm.
Adopting Eq.(2.8) and Eq.(2.9) in Eq.(5.5), the
interacting EoS parameter ωΛinter is expressed
as follows:

ωΛinter = −δρm
ρ
−

(
··
H + 4ḢH

)
3H
(
Ḣ + 2H2

) − 1. (5.8)

5.1 Intermediate Inflation

The behavior of EoS parameter for both cases
of non-interacting and interacting DE for the
intermediate inflation is expressed in Fig. 7:

Fig. 7 presents the variation of EoS parameter
for non-interacting and interacting cases versus
redshift z. It is seen from Fig. m and Fig. n that
the EoS parameter is in a decreasing negative
behavior which indicates a phantom-like behavior
for different values of n, over the considered
range of redshift.

5.2 Logamediate Inflation

In Fig. 8, the behaviors of non-interacting and
interacting EoS parameter of the logamediate
inflation are considered as:

Fig. o has a decreasing behavior at negative level
ωΛnon > −1, i.e., the non-interacting case is in a
phantom-like behavior, for n values, n = 5 (black-
solid), n = 7 (blue-dashed) and n = 9 (red-
dashed).

Fig. p represents a negative decreasing behavior
for n = 7 where the blue-dashed line for
ωΛinter,z=0.01 ' −0.947018 indicates a phantom-
like behavior. For n = 5, the black-solid line from
ωΛinter,z=0.01 ' 0.112782 to ωΛinter,z=0.05 '
0.0677319 shows a quintessence phase, from z =
0.01 to z = 0.05.
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5.3 Emergent Inflation
The behaviors of the EoS parameter for both non-
interacting and interacting emergent inflation are

expressed in fig. 9:
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Fig. 7. The behavior of EoS parameter as a function of red-shift z for the (m) non-interacting
and (n) interacting intermediate inflation, for n = 5 (black-solid), n = 5.2 (blue-dashed) and

n = 5.4 (red-dashed)
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Fig. 8. The behavior of EoS parameter as a function of red-shift z for the (o) non-interacting
(p) interacting logamediate inflation for n = 5 (black-solid), n = 7 (blue-dashed) and n = 9

(red-dashed)
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Fig. 9. The behavior of EoS parameter as a function of red-shift z for the (q) non-interacting
(r) interacting emergent inflation for n = 5 (black-solid), n = 5.2 (blue-dashed) and n = 5.4

(red-dashed)
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In Fig. q, the EoS parameter is a function of
redshift z and ωΛnon < −1 indicates a decreasing
negative behavior. We also notice a decreasing
behavior in Fig. r. The EoS for both cases of DE
does not cross the phantom barrier (ωΛ < −1)
and the model does not exhibit a quintessence-
like behavior for various values of n = 5 (black-
solid), n = 5.2 (blue-dashed) and n = 5.4 (red-
dashed), over the considered range of redshift.

The pressure (P ) of DE could be defined by using
the scalar field and the interactions between DE
and DM as [10]:

p =
γ

2
(φ̇)2 − V (φ(t)) + 16Hf ′(φ(t))

··
a

a

+8H2

(
f ′(φ(t))

··
φ+ f ′′(φ(t))

(
φ̇
)2
)
,

(5.9)

where the scalar field is given by φ(t) = a(t)nφo
and φo is a positive constant. The prime
indicates a derivative with respect to φ [10]. Here
f ′(φ) = df

dφ
and f ′′(φ) = d2f

dφ2 [9, 10].

The total energy density of DE and DM ρ+ ρm is
[10]:

ρ+ ρm =
γ

2
(φ̇)2 + V (φ)− 24H3f ′(φ)φ̇. (5.10)

The potential of the interacting DE is given by
solving Eq.(5.10) [10]:

V (φ(t)) = ρm + ρ− γ

2

(
φ̇
)2

+ 24ḟ(φ(t))φ̇H3.

(5.11)
To reconstruct the potential of the interacting DE
as a function of the cosmic time t, we solve
Eq.(2.8) with Eq.(5.7) in Eq.(5.11), then [10]:

V (φ(t)) = ρmoa
−3(1+δ) + 3c2

(
Ḣ + 2H2

)
−γ

2

(
φ̇
)2

+ 24f ′(φ(t))φ̇H3.

(5.12)

6 SQUARED SPEED OF THE
SOUND

Let us study an important parameter in
cosmology which is used to check the stability

of any DE model. This quantity is known as
‘squared speed of sound‘ v2

s .
The general definition is assigned as [16, 37]:

v2
s =

˙ptot

˙ρtot
=

ṗ

ρ̇+ ˙ρm
, (6.1)

where ptot = p is the total pressure and ρtot =
ρm + ρmo is the total energy density of the DE
model. The sign of v2

s plays an important role
in determining the stabilization of DE model. If
v2
s < 0, it means that the model is unstable.

Moreover, if v2
s > 0, the model is stable [37].

6.1 Intermediate Inflation

The v2
s behavior is presented in Fig.10:

The behavior of squared speed of sound
parameter for different values of n is shown in
Fig. 10. We find a decreased function remains
positive when n = 5 (black-solid) and n = 5.2
(blue-dashed) at the considered range from z =
0.05 to z = 0.1. This result indicates the stability
of the model when v2

s > 0.

6.2 Logamediate Inflation

The behavior of v2
s is revealed in Fig. 11:

In Fig. 11, the behavior of v2
s(z) as a function

of redshift z in case of logamediate expansion.
It represents an increasing behavior at positive
level for n = 5 (black-solid) and this is from
z = 0.01 to z = 0.05. The stability behavior of
universe happens when v2

s > 0, independently
on the values of n.

6.3 Emergent Inflation

The behavior of v2
s is expressed in Fig. 12:

Fig.12 clarifies an increasing positive behavior for
all values of n, so v2

s > 0 represents the stability
of the model.
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Fig. 10. The behavior of v2
s(z) as a function of red-shift z for the intermediate inflation for

n = 5 (black-solid), n = 5.2 (blue-dashed) and n = 5.4 (red-dashed)
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Fig. 11. The behavior of v2
s(z) as a function of red-shift z for the logamediate inflation, for

n = 5 (black-solid)
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Fig. 12. The behavior of v2
s(z) as a function of red-shift z for the emergent inflation for n = 5

(black-solid), n = 5.2 (blue-dashed) and n = 5.4 (red-dashed)

7 GENERALIZED SECOND
LAW OF THERMO-
DYNAMICS

Bekenstein and Hawking determined that the
entropy of black hole is proportional to its event
horizon [38] which leads to GSLT for black hole
physics. This law can be defined as the entropy
of black hole and its area is always increasing.
According to GSLT, the entropy of horizon and
entropy of matter sources inside horizen does not
decrease with respect to time.

dShorizon

dt
+
dSinside

dt
≥ 0, (7.1)

Ṡtot = Ṡh + Ṡin ≥ 0, (7.2)

where Ṡh is the entropy of horizon and Ṡin is the
entropy of matter inside horizon.

7.1 Entropy of Matter Inside
Horizon

From Gibb’s equation, we have [39]

TempdSin = PeffdVol + dEin. (7.3)

The IR cut-off of the universe Rh is equal to the
apparent horizon [39]:

Rh =
1

H
, (7.4)
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and the temperature inside the horizon is
evidenced as follow [39]:

Temp =
1

2πRh
. (7.5)

The volume of the system is [39]:

Vol =
4π

3
R2
h. (7.6)

The internal energy of system is [39]:

Ein = ρeffVol. (7.7)

Now, one can put Eq.(7.4), Eq.(7.5), Eq.(7.6)
and Eq.(7.7) together in Eq.(7.3) to obvious the
following relation:

Ṡin = 8π2R3
h

(
ρm −

ρ̇

3H

)(
Ṙh − 1

)
. (7.8)

7.2 Bekenstein Entropy
Gibbons and Hawking developed the idea of
Bekenstein for cosmological system, where
the entropy of cosmological event horizon is
proportional to horizon area. It is afforded as [39]:

Sh =
AB
4G

. (7.9)

The Bekenstein equation (7.9) relates
qualitatively various quantities: a geometric
quantity on the right hand side, the area AB of a
black hole and an information theoretic quantity
on the left hand side, the entropy Sh of the black
hole [40]. From the relation, AB = 4πR2

h and
G = 1, one obtains:

Sh = πR2
h, (7.10)

Ṡh = 2πRhṘh. (7.11)

Finally, by inserting Eq.(7.8) with Eq.(7.11) in
Eq.(7.2), we get [39]:

˙Stot =8π2R3
h

(
ρm −

ρ̇

3H

)(
Ṙh − 1

)
+ 2πRhṘh.

(7.12)

7.2.1 Intermediate inflation

The behavior of total entropy performs in Fig. 13:

In Fig. 13, the behavior of ˙Stot(z) as a function
of redshift z in case of intermediate expansion.
We have an increasing behavior at positive level
( ˙Stot(z) > 0) for n = 3 (red-dashed), but for other
values of n, n = 1 (black-solid) and n = 2 (blue-
dashed) the behavior of ˙Stot(z) = 0, from z = 0.05
to z = 1.

7.2.2 Logamediate inflation

The total entropy is expressed in Fig. 14:

In Fig. 14, the behavior of ˙Stot(z) as a function
of redshift z for the logamediate expansion. We
notice an increasing positive behavior for n = 7
(blue-dashed), but for n = 5 (black-solid), the
behavior of ˙Stot(z) = 0 , over the considered
range of redshift.

7.2.3 Emergent inflation

The behavior of total entropy is realized in Fig.
15:

Fig. 15 presents an increasing behavior at
positive level, where ˙Stot(z) > 0 for all values of n
from z = 0.05 to z = 1.

For three cases, we have an increasing positive
behavior. ˙Stot(z) > 0 indicates the GSLT is
verified.
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Fig. 13. The behavior of ˙Stot(z) for the intermediate inflation for n = 1 (black-solid), n = 2
(blue-dashed) and n = 3 (red-dashed)
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Fig. 14. The behavior of ˙Stot(z) for the logamediate inflation for n = 5 (black-solid), n = 7
(blue-dashed) and n = 9 (red-dashed)
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Fig. 15. The behavior of ˙Stot(z) for the emergent inflation for n = 5 (black-solid), n = 5.2
(blue-dashed) and n = 5.4 (red-dashed)

8 CONCLUSIONS

In this paper, the f(T ) model is considered for
different scale factor scenarios to explain the
cosmological accelerated expansion behavior of
the universe. In each model of our study, we used
different values of physical parameters as: for
the intermediate inflation, the values of physical
parameters are u = −2, B = 0.02, φo = 0.14,
ρmo = 0.23, δ = 0.05, zo = 1 and Ho = 74. For
the logamediate inflation, A = 10−3,φo = 0.14,
ρmo = 0.23 and δ = 0.05. For the emergent
inflation, ao = 0.12, µ = 0.3, λ = 0.3, φo = 0.14,
ρmo = 0.23 and δ = 0.05.
a In the section (4), the characteristics of the

universe represented by the deceleration
parameter q, the jerk parameter j, the
kerk parameter κ and the lerk parameter
l. The negative value of q describes
the accelerated expansion of the universe,
while the value of jerk parameter is helpful
for distinguishing the different accelerating
models, also j can indicate the dynamics
of the universe acceleration. The kerk
parameter κ and the lerk parameter
l indicate that the universe has an
accelerating behavior.

b In the section (5), the behavior of the EoS
parameter of DE is studied for both non-

interacting and interacting DE sectors. We
notice that the values of the ΛCDM model
can be assumed to be greater, equals or
less than −1. Assuming −1 ≤ ωΛ ≤ 1
indicates quintessence-like behavior, and
for ωΛ ≤ −1 represents phantom-like
behavior. In Figs.7, 8 and 9 the EoS
parameter has a decreasing behavior for
both ωΛnon and ωΛinter at negative part
that indicates a phantom-like behavior.

c In the section (6), the squared speed of the
sound determines if the model is stable
or not. We notice that the model is
either stable or unstable depending on the
values of the parameters. In Figs. 10, 11
and 12, the v2

s > 0 indicates a stable DE
model.

d In the section (7), the GSLT proves the validity
of thermal entropy and the increasing
behavior of the black-hole’s entropy refers
to ˙Stot(z) > 0.

These results are in agreement with the observed
data which proved that our model in the
framework of f(T ) modified gravity leads to an
accelerated universe.
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