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Abstract
The paper extends the applicability of our freely accessible Matlab package Chebpack to calculate
the eigenvalues and eigenfunctions of some higher order differential problems as well as to
semidiscretize evolution problems, directly or by using the Lyapunov-Schmidt reduction method.
The numerical examples illustrate the accuracy and the simplicity of the algorithms and prove the
importance of this approach for practical applications.
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1 Introduction
The mathematical models of many phenomena in the real world are expressed by higher order
differential equations and they have attracted considerable attention of many authors. The problem
of vibrating rods and plates, the problems in hydrodynamics and magnetohydrodynamics, problems
in quantum mechanics or elasticity for example led to such higher-order boundary value problems.

The new Matlab package Chebfun [1] uses Chebyshev pseudospectral method. It is built on
piecewise Chebyshev polynomial interpolants [2] and has a module for operatorial treating linear
or nonlinear ordinary differential equations, initial value or boundary value problems. It has the
necessary tools to be used for higher order differential problems. However, in Chebfun the discretiza-
tions are chosen automatically (not visible to the user) to achieve the maximum possible accuracy
available from double precision arithmetic and this fact increases the computing time. A number
of eigenvalues and eigenfunctions of a differential operator are approximated by applying eigs of
Matlab to the matrix of the discretized problem. This approach does not offer a complete image of
the spectral behavior of that approximating operator.

Our Matlab package Chebpack [3] [4] is based directly on the Chebyshev spectral tau method,
also used in an operatorial form. It is aimed to approximate solutions of differential problems -
initial value, boundary value or non-local problems, integro-differential equations, rootfinding, delay
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differential equations [5] [6]. Here we extend the applicability of Chebpack to find Chebyshev polyno-
mial approximations of the solutions for higher order differential problems. In our approach, the matrix
of the discretized problem is directly obtained by following the structure of the given mathematical
problem. The Chebyshev spectral tau method is more convenient for approximating linear operators.
Their eigenvalues and eigenfunctions are numerically calculated by using eig of Matlab which offers
the complete spectrum of the approximating operator. This fact is useful for the stability analysis of the
algorithms used for evolution problems. Moreover, the spectral tau method also gives an evaluation
of the residual, needed to estimate the numerical errors.

The paper is structured as follows. In section 2 we shortly describe Chebpack and the tau
method in order to introduce the main discrete operator companions to the continuous ones. Section
3 presents three applications of Chebpack to higher order eigenvalue problems, Lyapunov-Schmidt
reduction method and evolution equations. Section 4 contains numerical examples illustrating the
accuracy and the simplicity of the algorithms of Chebpack for some typical higher order problems.
Some comparisons with other Matlab packages and error evaluation are also given. All the necessary
Matlab codes for reproducing these examples are now part of an updated version of Chebpack, in
the folder Examples, subfolder High order problems.

2 The tau method

The Chebyshev spectral method [7] approximates the solution y of a differential problem by a finite
sum of a Chebyshev series

u(x) ≈ 1

2
c0T0(x) + c1T1(x) + · · ·+ cn−1Tn−1(x), x ∈ [−1, 1] .

Here Tk(x) = cos(k cos−1(x)), k = 0, 1, 2, ..., n − 1 are the Chebyshev polynomials of the first kind
and the coefficients c = {ck, k = 0, 1, ..., n − 1} represented as a column vector are the unknowns.
If L : C∞(−1, 1) → C∞(−1, 1) is a linear operator then let u be the vector of the corresponding
n coefficients of L(u)(x). The matrix L : IRn → IRn that maps c into u = Lc is the Chebyshev
n-approximation of L.

Our Matlab package Chebpack implements the Chebyshev spectral method as a tau method,
where we work in the spectral space of the coefficients. The tau method was invented by Lanczos
(1938, 1956) and later developed in an operatorial approach by Ortiz and Samara [8] [9].

The term ”operatorial” means that the linear operators that compose the differential or integral
problem (such as differentiation, integration, product with the independent variable or with known
functions) are discretized to their finite dimensional linear operator versions, expressed by appropriate
matrices M ≡ D, J, X, and preserving the operatorial structure of the original problem. The
discretized version, finally represented by a matrix acting on the Chebyshev coefficients vector of
the unknown function includes the additional initial, boundary value or nonlocal linear conditions,
again represented by certain vectors that replace certain rows of that matrix.

Chebpack assumes the representation of the unknown functions in truncated Chebyshev polyno-
mial series and the corresponding matrices M are given to act directly on the Chebyshev coefficients.
The spectral differentiation matrix behaves better than the corresponding physical one, that is full and
sensitive to rounding errors, see [3] for a relevant example. Generally, this kind of discretization is
performed by using the recurrence formula and the fast schemes of computation with Chebyshev
polynomials, see again [3] for more technical details on this topic.

Precisely, a function u(x) can be represented by its physical representation u(x1), u(x2), ...,
u(xn) of values of u at a given grid x, for example at Chebyshev points of the second kind

xk = − cos
(k − 1)π

n− 1
, k = 1, ..., n (2.1)
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or by its spectral representation c = {c0, c1, ..., cn−1} where

pn−1(x) =
c0
2
T0(x) + c1T1(x) + · · ·+ cn−1Tn−1(x) (2.2)

is the unique polynomial obtained by interpolating u(x) through the points x1, ..., xn.
Of course, the Chebyshev polynomials are defined on dom = [−1, 1] but any interval dom = [a, b]

can be shifted to [−1, 1] and we may use the shifted Chebyshev polynomials T ∗k (x) = Tk(αx + β),
x ∈ [a, b] with α = 2/(b−a) and β = −(b+a)/(b−a). The code [x,w]=pd(n,dom,kind) of Chebpack
calculates the n points x of the kind ”kind” on dom as a column vector. The weights w are used for
approximating the integrals ∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi) ≡ w · f(x).

For kind=1, x are the Chebyshev points of the first kind

xk = − cos
(2k − 1)π

2n
, k = 1, ..., n,

for kind=2 x are the Chebyshev points of the second kind (2.1) while for kind=3 x are the Legendre
roots, all these points shifted to dom. For each kind, w are the corresponding weights. Chebyshev
points are used in the Clenshaw-Curtis quadrature while the Legendre roots are used in the Gauss
quadrature [10].

An immediate application of the Legendre points is the weighted inner product of two functions

I =

∫ b

a

f(x)g(x)r(x)dx,

with the weight r(x). Here we use the more accurate Gauss formula, i.e. xleg are the Legendre points
and wleg are the corresponding quadrature weights given by kind=3 and then

I ≈
n∑
k=1

f(xleg)g(xleg)r(xleg)wleg.

This formula is implemented in I = wip( f,g,r,wleg);

The fast conversion between the spectral representation c of a function u and its physical values
v = u(x) for kind=1 or kind=2 is performed by the commands v=t2x(c,kind) and c=x2t(v,kind)

based on the Fast Chebyshev Transform. It is important to remark that linear operators L(u(x)) are
better represented directly in the spectral space while the nonlinear operators N(u(x)) are easily
handled in the physical space through the scheme

c−→v=t2x(c,kind)−→vn=N(v) −→cn=x2t(vn,kind).

Here c are the coefficients of u while cn are the coefficients of N(u).
If we need a matrix form T of these conversions, it is obtained from the code T=cpv(n,xc,dom),

where xc ∈ dom is an arbitrary column vector and

T = [T0/2, T1(ξ), ..., Tn−1(ξ)] , ξ =
2xc
b− a −

b+ a

b− a ∈ [−1, 1] (2.3)

is the matrix containing the values of the Chebyshev polynomials on the grid ξ. This code is based
on the recurrence relations

T1(x) = xT0, Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, ... (2.4)

and we have v = Tc and c = T−1v.
If we need the roots of a function u : [a, b] → IR, we first approximate this function by a

combination P of n Chebyshev polynomials by using x2t. The roots of P are the eigenvalues of
the corresponding colleague matrix C [2] [11]. This zerofinder utility is implemented in Chebpack by
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[z,uz,m]=chebroots(c,dom,loc,tol),

where the polynomial P is given by its Chebyshev coefficients c for the general computational domain
dom. At output, z are the roots in the interval loc, uz = p(z) (for test) while tol is a tolerance used
for retaining only the first m coefficients from c and for selecting the roots z > loc(1) + tol.

Another useful code is X=mult(n,dom) also based on the recurrence relations (2.4). If c is the
column of Chebyshev coefficients of a function u(x), then X · c is the column of the Chebyshev
coefficients of xu(x) for x ∈ dom. If a is the vector of the first m Chebyshev coefficients of a function
a(x), then A · c is the vector of the n coefficients of a(x)y(x). The multiplication matrix A is given by
the code A=fact(a,m) based on the relations

2Tj(x)Tk(x) = Tj+k(x) + T|k−j|(x), j, k = 0, 1, ... (2.5)

Of course, if a(x) is a short polynomial like a(x) = x2 − 1 for example, then A = X2 − E where E
is the unit matrix of size n. If a(x) is an elementary function, for example a(x) = ex, then A ≈ eX ≡
expm(X), the corresponding matrix exponential function.

The differentiation is discretized by a differentiation matrix D given by the code D=deriv(n,dom).
If c is the column of Chebyshev coefficients of a function u(x), then D · c is the column of the
Chebyshev coefficients of the derivative du

dx
. The definition of D is based on the relations

T0 = T ′1, T1 =
T ′2
4
, Tk =

T ′k+1

2(k + 1)
−

T ′k−1

2(k − 1)
, k = 2, 3, ..., (2.6)

see [3] [4] for details.
Similarly, the code [J,J0]=prim(n,dom) calculates the integration matrix J such that the coeffi-

cients of a primitive of a function u with the Chebyshev coefficients c are J ·c. Here the first coefficient
of the result J · c may be changed in order to obtain the coefficients for a specific primitive of u. For
example, the coefficients of the primitive which vanishes at a = dom(1) are obtained by using J0 · c.
All the above codes take into account a general dom.

The basic results for the spectral approximations are given by the following theorems from [2]:
Theorem 8.1 (Chebyshev coefficients of analytic functions). Let a function u analytic in [−1, 1]

be analytically continuable to the open Bernstein ellipse Eρ, where it satisfies |u(x)| ≤ M for some
M . Then its Chebyshev coefficients satisfy |a0| ≤M and |ak| ≤ 2Mρ−k, k ≥ 1.

Theorem 8.2 (Convergence for analytic functions). If u has the properties of the above theorem,
then for each n ≥ 0 its Chebyshev projections un and its Chebyshev interpolants pn satisfy respecti-
vely

‖u− un‖ ≤
2Mρ−n

ρ− 1
, ‖u− pn‖ ≤

4Mρ−n

ρ− 1
.

Theorem 21.1 (Geometric convergence of derivatives). Let a function u analytic in [−1, 1] be
analytically continuable to the closed Bernstein ellipse Eρ for some ρ > 1. Then for each integer
ν ≥ 0, the ν-th derivatives of the Chebyshev projections un and interpolants pn satisfy as n→∞∥∥∥u(ν) − u(ν)

n

∥∥∥ = O(ρ−n),
∥∥∥u(ν) − p(ν)n

∥∥∥ = O(ρ−n).

The above theorem ensures that if u is an analytic solution to a differential problem Lu = f ,
then the Chebyshev interpolants of Lu would converge geometrically to u as n → ∞. In spectral
computations we must approximate this exact solution by solving matrix problems Lu = f .

For linear differential equations with polynomial coefficients we may also follow the ideas from [9]
[12]. The main quality of the tau method is that the numerical solution of the exact problem is also an
exact solution of a perturbed problem. For some fixed n′ ≥ n, we associate with Lu = f the following
problem

Lu = f +

k′∑
k=0

τn′,kT
∗
n′−k, (2.7)
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where u is the above numerical solution represented by its coefficients filled with zeros to the dimension
n′. Here u is called the n-th tau method approximation to u, en = u− u is the n-th tau error and

k′∑
k=0

τn′,kT
∗
n′−k = ρn′

is called the tau perturbation term (or the residual). The tau perturbation term ρn′ can be calculated
by reconstructing the matrix L to the dimension n′ obtaining the matrix L̂ and using the remark that
in this case Lu is exactly represented by L̂u (of course, limited by the computer rounding errors).
Subtracting the perturbed equation from the exact one we obtain the error equation Len = −ρn′ . We
can now estimate the n-th Tau error en by using the extended discretization matrix L̂. Of course, for
nonlinear equations the problem is more complicated.

3 Applications

3.1 Eigenvalues and eigenvectors
A general form for a Sturm-Liouville problem is

−
(
p(x)u′(x)

)′
+ q(x)u(x) = λr(x)u(x), x ∈ [a, b] , (3.1)

c1u(a) + p(a)u′(a) = 0, c2u(b)− p(b)u′(b) = 0

where p ∈ C1[a, b], q, r ∈ C[a, b], p > 0, r ≥ 0 on [a, b]. There is an infinite number of eigenvalues
λn that can be ordered such that λ0 < λ1 < ... → ∞. The corresponding eigenfunctions φn form an
orthogonal basis on the Hilbert space L2

r(a, b). Sometimes one wishes to compute a large number of
eigenvalues and then a higher order accuracy of the methods is needed [13].

The are similar problems for the fourth-order Sturm–Liouville problem(
p(x)u′′(x)

)′′ − (s(x)u′(x))′ + q(x)u(x) = λr(x)u(x), x ∈ [a, b] , (3.2)

with four boundary conditions on u, u′, p(x)u′′ and/or (p(x)u′′)′− s(x)u′ specified at boundary {a, b}.
Under suitable conditions, the problem has an infinite sequence of eigenvalues λk, k = 0, 1, ... which
are bounded from below and can be ordered as an increasing sequence, λ0 ≤ λ1 ≤ ... → ∞. In
this case, each eigenvalue has the multiplicity of at most 2 [14]. These results are extended to higher
order Sturm-Liouville problems [15].

The Chebyshev tau method can be applied and we get the following equation for (3.1)

[−D ∗ p(X) ∗D + q(X)] ∗ c = λ ∗ r(X) ∗ c,

where D is the differentiation matrix and X is the multiplication by x matrix. Here p(X), q(X)
and r(X) are exponential versions of the functions p, q and r. In matrix form, this is a generalized
eigenvalue problem A ∗ c = λ ∗R ∗ c. If r ≡ 1 then R = E, the unit matrix of size n.

The boundary conditions could be implemented by changing the last two rows of A by

A(n− 1, :) = c1T (1, :) + p(a) ∗ T (1, :) ∗D
A(n, :) = c2T (2, :)− p(b) ∗ T (2, :) ∗D
T = cpv(n, dom, dom), dom = [a, b]

and the last two rows of R by zeros, obtaining new matrices Ã, R̃. Here, we take into account that
T (1, :) ∗ c = u(a), T (2, :) ∗ c = u(b), T (1, :) ∗ D ∗ c = u′(a) and T (2, :) ∗ D ∗ c = u′(b). Now, the
generalized eigenvalue problem Ã ∗ c = λ ∗ R̃ ∗ c has two infinity eigenvalues (generated by the two
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zero rows of R̃) and, depending on n, a third to a quarter of numerical eigenvalues approximate well
the exact ones.

Let us describe this tau method on a very simple example from [13], with boundary conditions
containing the parameter λ.

Consider the Sturm-Liouville problem

−y′′ + exy = λy, x ∈ [0, 1] ,

y(0) = 0,
√
λ sin(

√
λ)y(1)− cos(

√
λ)y′(1) = 0.

The algorithm is the following: for each given λ
- consider the initial conditions y(0) = 0, y′(0) = 1
- calculate the solution y(x;λ) and y′(x, λ) at x = 1. This means solving [−D2 + eX − λE](1...n−2)×(1...n)

T (1, :)
T (1, :) ∗D

 ·
 c0

...
cn−1

 =

 [0](1...n−2)×1

0
1


from where we obtain the Chebyshev coefficients c = (c0, ..., cn−1)T of the solution y(x, λ). Now,
y(1, λ) = T (2, :) ∗ c and y′(1, λ) = T (2, :) ∗D ∗ c,

- evaluate F (λ) =
√
λ sin(

√
λ)y(1, λ)− cos(

√
λ)y′(1, λ)

- solve the equation F (λ) = 0 by using chebroots.m for intervals of interest for λ; for this, we
take m values of λk, k = 1, ...,m at each interval interval, given by λ = pd(m, interval, 2) and the
values of F (λk) give through x2t the Chebyshev coefficients of the function F on the interval. Now
apply chebroots and obtain the roots - the approximate eigenvalues of the original problem - at that
interval.

These calculations are coded in ElDaou.m. The command

lambda=ElDaou(96,0:10:240,64);

i.e. for n = 96, on the intervals [0, 10], [10, 20],..., [230, 240] for λ, with 64 grid points for λ on each
interval, gives the 10 exact eigenvalues from Table 2 from [13].

The same method could be applied for the problem (3.2). We illustrate the method on the
following example from [16],

u(4) = λu′′, −1 < x < 1, (3.3)

u(±1) = u′(±1) = 0.

The analytical eigenvectors are: even modes u(x) = 1− cos(nπx)/ cos(nπ) with λ = −n2π2 and odd
modes u(x) = x− sin (qnx) / sin(qn) with λ = −q2n where qn = tan qn, nπ < qn < 2n+ 1)π/2 for all
integer n > 0. All the exact eigenvalues are real, negative and distinct.

The direct method, implemented in eig42D.m defines the matrices A = D4 and B = D2.
The problem becomes Ac = λBc, where c is the column of the Chebyshev coefficients of the
eigenvector corresponding to λ. In order to implement the boundary conditions, we calculate T =
cpv(n, [−1, 1], [−1, 1]) and consequently, we must replace the last four rows of A by

[T(1,:);T(2,:);T(1,:)*D;T(2,:)*D]

and the last four rows of B by zeros, obtaining the matrices Ã and B̃.
This Chebyshev tau method provides spectrally accurate approximations to the lower magnitude

eigenvalues but it also yields four infinity eigenvalues generated by the zero rows of B̃ and two large
positive eigenvalues, that are spurious.
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A simple change from Chebyshev polynomials Tj(x) to (1 − x2)2Tj(x) eliminates all those
spurious eigenvalues, as it is proven in [17] and coded here in eig42F.m. If we use the Galerkin
method with these basic functions verifying the boundary conditions,

u(x) =

n−5∑
j=0

cj(1− x2)2Tj(x) = (1− x2)2
n−5∑
j=0

cjTj(x)

the coefficients c are expressed in the new basis (1 − x2)2Tj(x) by (E −X2)2c where cn−4 = ... =
cn−1 = 0. The problem becomes

D4(E −X2)2c = λD2(E −X2)2c

In order to pass the results again to Galerkin basis (1 − x2)2Tj(x), we must transform the above
problem to

(E −X2)2D4(E −X2)2c = λ(E −X2)2D2(E −X2)2c.

This means that the discrete form of the eigenproblem (3.3) is Ac= λBc where the matrices

A = (E −X2)2D4(E −X2)2, B = (E −X2)2D2(E −X2)2

must be truncated by eliminating the last four rows and the last four columns to obtain A, B and
c= [c0, ..., cn−5]T . This problem gives the eigenvalues (without any spurious eigenvalue) while the
eigenfunctions in the original Tj(x) basis are given by (E−X2)2c where again cn−4 = ... = cn−1 = 0.

The computation time is the same as for using DMS (eig42DMS.m)[18], i.e. 0.016 sec. with a
difference of about 1.e − 7 between the first 26 eigenvalues. Chebfun (eig42CHEBFUN.m) [1] needs
3.16 sec. by using an adaptive algorithm.

In order to estimate the errors we apply the ideas from [19]. Let us consider again the problem
Ãc = λB̃c with the boundary conditions enclosed in the last four rows of Ã and B̃. These matrices
will be partitioned as (

A11 A12

A21 A22

)(
c′

c′′

)
= λ

(
B11 B12

B21 B22

)(
c′

c′′

)
where the size of the blocks is (A11)(n−4)×(n−4), (A12)(n−4)×4, (A21)4×(n−4), (A22)4)×4 and the same
for B̃ while the size of the vectors is (c′)(n−4)×1 and (c′′)4×1.

We calculate the eigenvalues and the eigenvectors from

A11c
′ +A12c

′′ = λ
(
B11c

′ +B12c
′′) ,

A21c
′ +A22c

′′ = 0.

From the second equation we have c′′ = −A−1
22 A21c

′ and then the problem becomes

(A11 −A12A
−1
22 A21)c′ = λ(B11 −B12A

−1
22 A21)c′.

The numerical solutions λ and c = [c′;−A−1
22 A21c

′] verifies exactly the equation (2.7)

Ac− λBc =

(
0
τ

)
where (τ)4×1. The last four rows give the four coefficients τ and this is a measure of the accuracy for
each eigenvalue λ and corresponding eigenvector c.

The program eig42E.m gives the corresponding norms of τ in Table 1 for the first 3 eigenvalues.
We remark that this elimination method does not discard the spurious eigenvalues.

There is another problem with the order of growth of the entries of D4 which is O(n7) and can
lead to serious round off error problems. We use instead FD4F where F = (E −X2)2. A numerical
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Table 1: The norm of the τ coefficients for the first three eigenvalues

# λ ‖τ‖
1 -9.869584957916786 0.000000072237616

2 -20.190724958589310 0.000000560578509

3 -39.478422984210063 0.000000134315862

Figure 1: Growth order for D4 and FD4F

experiment with magnitude.m, for n=20:10:120 shows in Figure 1 the maximum absolute value of
the terms M = max(max(abs(D4))) versus the dimension n. It is O(n7.13) for D4 and only O(n4.2)
for FD4F (between O(n5) for D3 and O(n3) for D2). Moreover, the structure of the matrix FD4F is
improved compared to that of the matrix D4.

The case of a second order Surm-Liouville problem is solved in an older Matlab package LiScEig
[20]. The above case of higher dimension will be included in an extended version of Chebpack.

3.2 Lyapunov-Schmidt reduction method
Let us suppose that we have to solve the nonlinear steady differential problem Lu = Nu together
with boundary conditions, where L is a linear operator and N = N(x, u(x)) is a nonlinear operator

Lu = −(p(x)u′)′ + q(x)u, ∈ [a, b] ,

α11u(a) + α12u
′(a) = 0, α21u(b) + α22u

′(b) = 0.

If the operator L admits the eigenfunctions φk, k = 1, 2, ... and the eigenfunctions form an orthonormal
basis in the domain of L, then we can search the solution u by expansion in eigenfunctions of L

u =

n∑
k=1

ckφk.
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Following Orszag [21] we may remark that the infinite-order accuracy of Chebyshev polynomial
approximations to infinitely differentiable functions should be contrasted with the situation when ex-
pansions are made in terms of orthogonal eigenfunctions where only finite-order rates of convergence
are obtained. However, the discretized form of L only involves sparse matrices. The pseudospectral
differentiation matrices are full and even though we work in spectral space of the coefficients, some
matrices like eX are also full. Finally, we must solve a large nonlinear system of equations for the
coefficients perturbed by imposing the boundary value conditions. The eigenfunctions of L verify the
boundary conditions and the linear part of the discretized system becomes diagonal.

Indeed,

Lu ≡ L

(
n∑
k=1

ckφk

)
=

n∑
k=1

ckλkφk = N

(
n∑
k=1

ckφk

)
=

n∑
k=1

Ckφk

where

Ci =

∫ b

a

N

(
n∑
k=1

ckφk

)
φi, i = 1, ..., n.

Projecting on the eigenfunctions we obtain the nonlinear system

ckλk = Ck, k = 1, ..., n.

The Lyapunov-Schmidt reduction method is the following, see [22] for more details. If we choose
a small index m and project the equation Lu = Nu only on sp{φm+1, ..., φn} we obtain

ck =
Ci(c1, ..., cn)

λk
, k = m+ 1, ..., n. (3.4)

For a sufficiently great m and for fixed c1, ..., cm, the above operator becomes a contraction and we
can iterate until a fixed point is reached

c∗ = (c1, ..., cm, c
∗
m+1, ..., c

∗
n),

which is a solution of the equation (3.4), the associated function to (c1, ..., cm). Given (c1, ..., cm) the
associated function coefficients are computed by as.m. Of course, c∗i , i = m+ 1, ..., n depend on ci,
i = 1, ...,m.

Now, let us project the equation Lu = Nu on sp{φ1, ..., φm},

ckλk = Ck(c1, ..., cm, c
∗
m+1, ..., c

∗
n), k = 1, ...,m

and obtain a nonlinear small system for c1, ..., cm. Given c1, ..., cm, each evaluation of

c∗ = (c1, ..., cm, c
∗
m+1, ..., c

∗
n)

requires fixed point iterations (3.4). We solve this system by Newton method (the Jacobian of C is
obtained again by fixed point iterations) and finally we obtain the coefficients of the solution

c∗ = (c∗1, ..., c
∗
m, c

∗
m+1, ..., c

∗
n)

(i.e. the solution u = φ · c∗) of the problem Lu = Nu. These calculations are implemented in lisc.m.
We remark that m = 0 means pure fixed point iterations while m = n means pure Galerkin’s method.

There is a natural extension for equations of the form Lu = N(x, u(x), u′(x)), that is

L

(
n∑
k=1

ckφk

)
= N

(
x,

n∑
k=1

ckφk,

n∑
k=1

ckφ
′
k

)
or for higher order operators L.

The case of a second order Surm-Liouville operator L is solved in an older Matlab package
LiScNLS [23]. The extension for higher dimension will be included into an extended version of
Chebpack.
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3.3 Evolution problems
If we have to solve numerically a nonlinear evolution problem,

ut + Lu = Nu

like KdV problem (Example 6),

ut + uxxx + 6uux = 0, x ∈ (−L,L), t ∈ [0, tfinal] (3.5)

u(−L, t) = u(L, t) = ux(L, t) = 0, u(x, 0) = u0(x)

we first perform a spatial semidiscretization using the tau spectral method and we obtain a differential
system for the expansion coefficients.

The solution is represented as a truncated series

uN (x, t) =

N−1∑
k=0

ck(t)T ∗k (x) (3.6)

and we denote by c(t) the column vector of the coefficients. From (3.5) we obtain the differential
system

c′(t) +D3c(t) = N(c(t)), c(0) = c0

where

N(c(t))=-6*x2t(t2x(c,kind)*t2x(D*c,kind),kind), c0=x2t(u0(x),kind).

Here x are the Chebyshev points of the second kind and dom=[-L,L]. This system has the
general form

∂c

∂t
+ Lc = N [c] , (3.7)

where L is the linear part and N is the nonlinear part and it is a stiff system, with a sparse matrix L.
As above, we obtain a new system with boundary condition enclosed. This system is partitioned as(

c(1)

c(2)

)′
+

(
L11 L12

L21 L22

)(
c(1)

c(2)

)
=

(
N (1)

N (2)

)
where

c(1) = c(1 : n− 3), c(2) = c(n− 2 : n),

N (1) = N [c] (1 : n− 3), N (2) = N [c] (n− 2 : n),

L11 = L (1 : n− 3, 1 : n− 3) , L12 = L (1 : n− 3, n− 2 : n) ,

L21 = L (n− 2 : n, 1 : n− 3) , L22 = L (n− 2 : n, n− 2 : n) .

Consequently, (3.7) becomes

c(1)′ + L11c
(1) + L12c

(2) = N (1),

0 + L21c
(1) + L22c

(2) = 0.

From the second equation which represents the boundary conditions, we obtain

c(2) = −L−1
22 L21c

(1) (3.8)

and then the first equation becomes

c(1)′ +
(
L11 − L12L

−1
22 L21

)
c(1) = N (1). (3.9)
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The system (3.9) is integrated with the initial condition c(1)(0) = c
(1)
0 and finally c(2) is obtained from

(3.8).
In order to avoid the small time step imposed by explicit integrators, we will use an exponential

time differencing integrator for (3.9). Let A = L11 − L12L
−1
22 L21.

If we multiply (3.7) by the exponential matrix eAt as an integrating factor, we obtain

d

dt

(
eAtc(1) (t)

)
= eAtN (1) [c (t)] .

By integrating between time levels tn and tn+1 and denoting c(1)n = c(1)(tn), we are led to

eAtn+1c
(1)
n+1 − e

Atnc(1)n =

∫ tn+1

tn

eAτN (1) [c (τ)] dτ,

and finally we obtain

c
(1)
n+1 = e−Ahc(1)n +

∫ h

0

e−A(h−τ)N (1) [c (tn + τ)] dτ,

where h = tn+1 − tn is the time step.
Now we approximate N (1) [c (tn + τ)] by a polynomial in τ and calculate the integral exactly.

Assuming N (1) [c (tn + τ)] = constant = N (1) [c (tn + h)] = N1
n+1 we obtain the implicit exponential

time differencing Euler method,

c
(1)
n+1 = e−Ahc(1)n + hΦ1(−Ah)N (1) [cn+1] , c

(2)
n+1 = −L−1

22 L21c
(1)
n+1

where Φ1(M) = M−1(eM − I) and I is the unit matrix. These methods can be combined into a
symmetric exponential integrator

c(1)=e−A
h
2 c(1)n +

h

2
Φ1(−Ah

2
)N1 [c] , c(2) = −L−1

22 L21c
(1) (3.10)

c1n+1 = e−A
h
2 c(1) +

h

2
Φ1(−Ah

2
)N (1) [c] , c

(2)
n+1 = −L−1

22 L21c
(1)
n+1,

n = 0, 1, ..., c0 = c(0)

and we refer to [24] for the properties of the symmetric exponential integrators.

The first (implicit) relations are solved with respect to c =
(
c(1), c(2)

)T
by fixed point iterations

c
(1)

(k+1)=e
−Ah

2 c(1)n +
h

2
Φ1(−Ah

2
)N1 [c(k)] , c(2)(k+1) = −L−1

22 L21c
(1)

(k+1), c(0) = cn

that, for a sufficiently small time step h, converge toward c. The last relations give now the approximate
solution cn+1 at the next time level tn+1.

The case of a second order Surm-Liouville operator L is solved in an older Matlab package
LiScNLE [25] which solves (3.7) by Crank-Nicolson or backward-Euler methods. Chebpack solves
(3.9) with exponential time differencing method. The above algorithms for higher dimension will be
included in an extended version of Chebpack.

4 Numerical examples
Example 1. Let us calculate the eigenvalues of the third order problem [26]

v′′′ = λv, x ∈ [−1, 1],

v(−1) = v′(−1) = v(1) = 0.
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Figure 2: The eigenvalues for Example 1, n = 64

The code KdV eig.m uses the factor F = (E −X)(E + X)2 to include the boundary condition
in the problem. The exact eigenvalues are real and negative, defined by the zeroes of the function

f(λ) = e3λ
1/3

− 2 sin
(√

3λ1/3 +
π

6

)
.

For n = 64, the first 15 numerical eigenvalues are real and negative but the other are complex,
see Figure 2. Table 2 contains the values of λk and f(λk) for k = 1, 2, 3. The eigenfunctions are not
orthogonal. Chebpack needs 0.13 sec. to obtain 15 eigenvalues while Chebfun (KdV eig CHEBFUN.m)
needs 1 sec. with much larger values of f(λk).

Table 2: First three eigenvalues for example 1

# λ ∗ 1.e− 4 f(λ)

1 -0.000948240693555 -0.00000000001

2 -0.006069365841144 -0.00000000003

3 -0.018948497984446 -0.00000000021

It is well known (see [27] for a recent analysis of the problem and [28] for historical remarks) that
the eigenfunctions of the third order differential operator S = ±i

(
−i ∂

∂x

)3 form or do not form a basis in
the domain of S. The corresponding initial-boundary value problem for the partial differential equation
qt + aSq = 0 (with a = ±i) is well-posed or ill-conditioned. Consequently, the initial-boundary value
problem admits or does not admit a unique solution representable by a discrete series expansion in
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the eigenfunctions of S. These facts depend on the sign of a and on the value of β (β = 0, β 6= 0 or
β =∞) in the boundary conditions

u(0) = u(1) = u′(0) + βu′(1) = 0.

There exists a biorthogonality between the eigenfunctions φn and ψm of the adjoint problems

φ′′′ = −λφ, x ∈ [0, 1], ψ′′′ = λψ, x ∈ [0, 1],
φ(0) = φ′(0) = φ(1) = 0, ψ(0) = ψ(1) = ψ′(1) = 0,

i.e. ∫ 1

−1

φnψmdx = 0 for m 6= n.

The Fourier series of a function f(x) has the form

F (x) =

∞∑
n=1

∫ 1

0
f(x)ψn(x)dx∫ 1

0
φn(x)ψn(x)dx

φn,

The code Lutzen.m verifies this biorthogonality but with poor accuracy compared to the self-adjoint
problems.

Example 2. The Orr-Sommerfeld equation [21] governs the linear stability of a two-dimensional
shear flow. It can be put in the form

y′′′′ − 2y′′ + y

R
− 2iy − i(1− x2)(y′′ − y) = c(y′′ − y)

y (±1) = y′ (±1) = 0.

This is an eigenvalue problem and an important example is for R = 5772. Here we implement the
boundary conditions again with the factor F = (1 − x2)2 in the program OrrSom.m. The program
OrrSomDMS.m uses DMS [18] and the program OrrSomCHEBFUN.m uses Chebfun [1]. The results are
shown in Figure 3. The computing time is 0.77 sec. for Chebpack, 0.22 sec. for DMS and 4.5 sec. for
Chebfun with an adaptive algorithm. For R = 10000 the result with n = 128 reproduces Table 5 from
[21].

Example 3. A Legendre-like equation from [14],(
P (x)y′′

)′′ − (S(x)y′
)′

= λy, x ∈ (−1, 1), P (x) = (1− x2)2, S(x) = 12− 4x2,

−8y′(−1) = λy(−1), −8y′(−1) = λy(−1),

−(Py′′)′ + Sy′ =
λ

x
y − λ

8x
Py′′, x = ±1.

This is an example that contains the eigenparameter in boundary conditions. The exact eigenvalues
are

λk = 8k + 16k(k − 1) + 8k(k − 1)(k − 2) + k(k − 1)(k − 2)(k − 3), k = 0, 1, 2, ...

The implementation is direct in Greenberg6.m, i.e. Ac = λBc, where A = D2(PD2) − D(SD)
and B = E where P = (E − X2)2, S = 12E − 4X2, E is the unit matrix, X is the multiplication by
x matrix and D is the differentiation matrix. By implementing the boundary conditions, the problem
becomes 

A
−8T1D
8T2D

T1(−D(PD2) + SD)
T2(−D(P ∗D2) + SD)

 · c = λ


A
T1

T2

T1(−E + PD2/8)
T2(E − PD2/8);

 · c
and the error for the first 10 eigenvalues is less than 1.e− 6 for n = 96.

784



British Journal of Mathematics and Computer Science 3(4), 772-793, 2013

Figure 3: Eigenvalues of the Orr-Sommerfeld problem, R = 5772

Example 4. The Kuramoto-Sivashinski equation dates to the mid-1970s and can be written as

ut + ν uxxxx + uxx = −uux.

Periodic boundary value conditions was used in [29] for ν = 0.127 and implemented as an
example for Lyapunov-Schmidt method in [25]. We consider here the nonperiodic boundary value
conditions used in [30],

u(±16π, t) = ux(±16π, t) = 0

with an initial condition of the form

u(x, 0) = ϕ(x) ≡

{
0.1 sin2

(
x2

2

)
, −12π < x < −10π

0 otherwise

over the domain [−16π, 16π] and for ν = 1.
We search the solution as an eigenfunction expansion

u(x, t) =

100∑
k=1

ck(t)φk(x)

where φk(x) are the orthonormal system of eigenfunctions of the problem

φxxxx + φxx = λφ, x ∈ [−16π, 16π] ,

φ(±16π) = φx(±16π) = 0.

The spatial interval [−16π, 16π] is discretized with n = 256 Legendre points given by
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[xleg,wleg]=pd(256,[-16*pi,16*pi],3).

We calculate the eigenfunctions φk and the eigenvalues λk like in Example 1, by using the factor
F = (16π + x)2(16π − x)2 to implement the boundary conditions. The semidiscretized problem
becomes

c′k(t) = −λkck(t) +N(c1, ..., c100)k, k = 1, ..., 100

ck(0) =

∫ 16π

−16π

ϕ(x)φk(x)dx, N(c1, ..., c100)k = −
∫ 16π

−16π

u(x)ux(x)φk(x)dx.

The integrals are calculated by using the function wip.m. This initial value problem is solved by using
the stiff integrator ode15s of Matlab in the program KS ode.m. The result is presented in Figure 4
and it is in a good concordance with the corresponding figure from [30]. The code needs 1.9 sec.
for calculating 100 eigenfunction and 2.2 sec. for time evolution for t ∈ [0, 15]. The solution is also

Figure 4: Solution of the Kuramoto-Sivashinski problem

obtained by using the Lyapunov-Schmidt method for the same data in the program KS evol.m which
integrates in time the semidiscretized problem by using Crank-Nicolson method with 1500 time steps
of dt = 0.1. The nonlinear system is solved at each time step by at most 7 fixed point iterations, the
time for calculating the eigenfunctions was 1.9 sec. and the time for time evolution was 6.3 sec. The
two solutions coincide for t ∈ [0, 60] while for t > 60 the differences increase due to the fact that the
solution is chaotic and the two methods have different accuracies.
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Example 5. The Boussinesq equation is one of the partial differential equations which models
nonlinear dispersive waves and has applications in many areas. It possesses special solutions in the
form of solitons. The solitons maintain their shape localized within a region while traveling at constant
speed. They can interact with other solitons, and emerge unchanged from the collision, except for
a phase shift. Nowadays the solitons are used to describe the complex dynamical behavior of wave
systems in hydrodynamics, optical fibers, plasmas, shock waves, tornados, etc.

The example of the “good” Boussinesq equation has the following form

utt − uxx −
(
u2)

xx
+ uxxxx = 0, x ∈ [−50, 50], t ∈ [0, 20] ,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

u(−50, t) = u(50, t) = ux(−50, t) = ux(50, t) = 0.

with an exact solution

u(x, t) = −

{
Asech2

(√
A

6
(x− ct− x0)

)
+ b+

1

2

}

where A = 0.369, b = −0.5, x0 = 0 and c =
√
−2 (b+A/3). The initial conditions are calculated

from this exact solution. We refer to [31] for a review on the numerical methods for this problem.
We search here for the solution as an eigenfunction expansion

u(x, t) =

100∑
k=1

ck(t)φk(x) (4.2)

where φk(x) are the orthonormal system of eigenfunctions of the problem

φxxxx − φxx = λφ, x ∈ [−50, 50] ,

φ(±50) = φx(±50) = 0.

The spatial interval [−50, 50] is discretized with n = 256 Legendre points given by

[xleg,wleg]=pd(256,[-50,50],3);

and we calculate the eigenfunctions φk and the eigenvalues λk like in Example 1, by using the factor
F = (−50 − x)2(50 − x)2 to implement the boundary conditions. The semidiscretized problem (4.2)
becomes

c′′k(t) = −λkck(t) +N(c1, ..., c100)k, k = 1, ..., 100

ck(0) =

∫ 50

−50

ϕ(x)φk(x)dx, c′k(0) =

∫ 50

−50

ψ(x)φk(x)dx,

N(c1, ..., c100)k = −
∫ 50

−50

[
u(x)2

]′′
φk(x)dx.

The integrals are calculated by using the function wip.m. This initial value problem is solved again
by using the stiff integrator ode15s of Matlab. Once the solution is calculated, it is compared with the
exact solution. We also test the law of mass conservation

M =M(t) =

∫ ∞
−∞

u(x, t)dx ≈
n∑
k=1

wlegk · u(xlegk, t)

by plotting M−M(t = 0). The calculations performed by Boussinesq.m need 3.9 seconds to
approximate the eigenfunctions and 1.05 seconds to obtain the numerical solution of the whole
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problem. The test results are:

−2.9759032 ≤M(t) ≤ −2.9759024

err(t) < 1.e− 7 for t ≤ 10

err(t) < 1.e− 6 for t ≤ 20.

Example 6. The Korteweg – de Vries (KdV) equation [32] is a time dependent non-linear partial
differential equation of third order and among its solutions are again solitary waves (solitons).

The KdV equation is well suited as a test object in applying numerical methods to non-linear
PDEs with unbounded spatial domain, since we have analytical solutions and we can appreciate the
quality of the numerical approximation. Moreover, the KdV equation admits an infinite number of
conservation laws and the corresponding invariants of motion can be used as verification tools for the
conservation properties of the numerical scheme.

We test Chebpack on the problem

ut + uxxx + 6uux = 0, x ∈ (−∞,∞), t ∈ [−20, 20]

u (±∞, t) = 0, u(x, 0) = u0(x).

Most works on spectral methods applied to above KdV equation use a periodicity condition on a
bounded interval x ∈ [−L,L] to simulate the behavior at infinity – exponential decay. Here we will
use the same truncation of the unbounded spatial domain but we impose artificial homogeneous
boundary conditions

u(−L, t) = u(L, t) = ux(L, t) = 0, L = 50.

We must stop the calculations if the nonzero part of the solution overtakes that boundary, in order to
avoid the reflections. In fact, both methods solve a modified problem, not the given problem but they
are appropriate since we are not interested in the effect of boundary conditions.

We choose an initial condition

u(x, t) =

3∑
i=1

βisech2

(√
βi
2

(x− 2βit)

)
, t = −20

β1 = 0.4, β2 = 0.7, β3 = 1

which generates a solution as a nonlinear superposition of three solitons.
We integrate the problem by using the scheme (3.10) for t ∈ [−20, 20]. The exact solution, given

in [32] is too complicated to be used for comparison and, of course, the numerical solution is affected
by the artificial boundary conditions. We test instead the time invariants of motion

I1 =

∫ 50

−50

u(x, t)dx, I2 =

∫ 50

−50

u(x, t)2dx, I3 =

∫ 50

−50

[
2u(x, t)3 − ux(x, t)2

]
dx.

Figure 5 contains the solution given by KdV.m with n = 256, dt = 0.05, 800 time steps and for the
steps from 10 to 700 we have

I1 ∈ [6.9828, 6.9850] , I2 ∈ [3.4659, 3.4675] , I1 ∈ [−3.4201,−3.4162] .

The code needs 10 iterations per time step and the computation time was about 0.6 sec. per time
step.

Example 7. An eighth order eigenvalue problem with hinged boundary conditions. This problem
comes from electrohydrodynamics and it has been extensively studied numerically in [33]:(

D2 − a2
)4
F − La4F +Ra2(D2 − a2)F = 0, z ∈ (−0.5, 0.5)

F = D2F = D4F = D6F = 0 at z = ±0.5.
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Figure 5: Solution of the KdV problem

Here L and a are physical parameters and R stands for the Rayleigh number whose critical value
should be determined.

Following [33], the above eighth order eigenvalue problem is transformed into a second order
system of differential equations supplied only with Dirichlet boundary conditions,

U1 − (D2 − a2)U4 = 0,

U2 − (D2 − a2)U1 = 0,

U3 − (D2 − a2)U2 = 0,

(D2 − a2)U3 − La4U4 = −Ra2U1,

U1 = U2 = U3 = U4 = 0 at z = ±0.5

where U4 = F, U1 = (D2 − a2)U4, U2 = (D2 − a2)U1 and U3 = (D2 − a2)U2.
In matrix form, this problem becomes a generalized eigenvalue problem ÃU = R B̃U , where

A =


E O O −D2 + a2E

−D2 + a2E E O O
O −D2 + a2E E O
O O D2 − a2E −La4E

 ,

U =


U1

U2

U3

U4

 , B =


O O O O
O O O O
O O O O
−a2E O O O

 ,

E being the unit matrix of order n and O being the zero matrix of the same order. The matrices Ã
and B̃ are obtained by implementing the Dirichlet boundary conditions in the last two rows of each
row of blocks.

The Matlab code is
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function lam=Dragomirescu system(n,a,L)

%call lam=Dragomirescu system(32,sqrt(4.92),1);

dom=[-0.5,0.5];D=deriv(n,dom);T=cpv(n,dom,dom);E=speye(n);Z=zeros(n);

A11=E;A11(n-1:n,:)=T;A22=A11;A33=A11;A44=-L*a^4*E;A44(n-1:n,:)=T;

A14=-D^2+a^2*E;A14(n-1:n,:)=zeros(2,n);A21=A14;A32=A14;A43=-A14;

B41=-a^2*E;B41(n-1:n,:)=zeros(2,n);

A=[A11,Z,Z,A14;A21,A22,Z,Z;Z,A32,A33,Z;Z,Z,A43,A44];

B=[Z,Z,Z,Z;Z,Z,Z,Z;Z,Z,Z,Z;B41,Z,Z,Z];

lam=sort(eig(full(A),full(B)));

The above program generates many infinite or spurious eigenvalues due to the singularity of B
and to the nature of Chebyshev spectral method but the smallest positive eigenvalue is

lam(3) = 657.1806756...

We remark that the analytical value for a =
√

4.92 and L = 1 is Ranalytical = 657.1806... The
interested reader is encouraged to experiment other values of a and L.

Example 8. The Viola eigenvalue problem. This is a singularly perturbed eigenvalue problem,
see [34] for more details:

D2 [(1− θx)3D2u
]

= λ (1− θx)u, x ∈ (0, 1)

u = D2u = 0 at x = 0, 1,

where the parameter θ satisfies 0 ≤ θ < 1.
For θ << 1 the problem is discretized directly as AU = λBU , where

A = D2 [(E − θX)3D2] , B = E − θX.

The boundary value conditions are implemented in the last four rows of A and B.
The Matlab code is
function lam=Viola(n,theta)

%call lam=Viola(24,0.5);

dom=[0,1];X=mult(n,dom);D=deriv(n,dom);T=cpv(n,dom,dom);E=speye(n);

A=D^2*((E-theta*X)^3*D^2);B=E-theta*X;

B(n-3:n,:)=zeros(4,n);A(n-3,:)=T(1,:);A(n-2,:)=T(1,:)*D^2;

A(n-1,:)=T(2,:);A(n,:)=T(2,:)*D^2;

L=eig(full(A),full(B));lam=sort(diag(L));

The above program generates some infinite or spurious eigenvalues but the smallest positive
eigenvalue is

λ1 = 50.716230632...

We remark that this eigenvalue is confirmed by Chebfun [1],

λ1 = 50.716216...

and it is in the range given by Fichera (Fichera, G., Numerical and quantitative analysis, Pitman
Press, London, 1978, p. 43),

50.71623063 ≤ λ1 ≤ 50.71623066.

For θ → 1− the problem becomes singular. Following [34], the problem is transformed into a
second order system of differential equations, supplied only with Dirichlet boundary conditions,

(1− θx)3D2u− v = 0,

D2v = λ (1− θx)u,

u = v = 0 at x = 0, 1.
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In matrix form, we have a generalized eigenvalue problem AU = λBU,(
(E − θX)3D2 −E

O D2

)(
u
v

)
= λ

(
O O

E − θX O

)(
u
v

)
.

The Matlab program is
function lam=Viola system(n,theta)

%call lam=Viola system(256,0.9999);

dom=[0,1];X=mult(n,dom);D=deriv(n,dom);T=cpv(n,dom,dom);E=speye(n);

A11=(E-theta*X)^3*D^2;A12=-E;A21=zeros(n);A22=D^2;A=[A11,A12;A21,A22];

A(n-1,:)=[T(1,:),zeros(1,n)];A(n,:)=[T(2,:),zeros(1,n)];

A(2*n-1,:)=[zeros(1,n),T(1,:)];A(2*n,:)=[zeros(1,n),T(2,:)];

B=zeros(2*n);B(n+1:2*n,1:n)=E-theta*X;B(2*n-1:2*n,1:n)=zeros(2,n);

L=eig(full(A),full(B));lam=sort(L);

This program generates in 12 sec. many infinite or spurious eigenvalues but the smallest positive
eig envalue for θ = 0.9999 is λ2 = 1.7744... We remark that the corresponding eigenfunction has a
very large derivative near x = 1 and this induces difficulties for spectral methods. Chebfun [1] gives
almost the same eigenvalue in 254 sec. For n = 256 and θ = 0.999999 the above program gives
λ1 = 1.2525...in 12 sec. while Chebfun failed to converge.

5 Conclusions

The Chebyshev spectral tau method implemented in our package Chebpack in an operatorial form
leads to very simple and efficient codes that can solve higher order linear problems and evolution
problems including Lyapunov-Schmidt reduction method with controllable accuracy. The advantage
of discretization of linear operators by their finite dimensional versions, expressed by appropriate
matrices, is manifested by efficiency of programming and reduction of differential or integral problems
to algebraic ones (linear or non-linear algebraic systems, eigenvalue problems for matrices). These
finite dimensional problems can then be solved by specific methods. Moreover, the use of spectral
Galerkin method for eliminating the appearance of spurious eigenvalues (specific to the tau spectral
method for higher order problems) can be simplified by this operatorial treatment.

The algorithms are accompanied by many numerical examples. All the necessary Matlab sources
for reproducing the examples are now part of a freely accessible updated version of Chebpack [4], in
the folder Examples, subfolder High order problems.
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