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ABSTRACT

The Middle East’s largest industrial complex produces flat steel sheets with specific
properties such as low thickness, high strength and suitable formability in order to reduce
the vehicle weight and fuel consumption and prevention of environmental pollution. The
aim of this study is to investigate the effect of some important explanatory variables on
suitable formability of manufacturing steel sheets according to primary data set. Existence
or lack of existence of crack on steel sheet is considered as a binary response variable. It
is determined by bending test with the angle of zero degree. Existence of multicollinearity
between mentioned explanatory variables has an effect on the probability of crack
existence. Because of special condition of the response variable, which is binary, the
suitable regression is logistic, and correction techniques based on least squares do not
work. Developments in weighted multicollinearity diagnostics are used to assess maximum
likelihood logistic regression parameter estimates. Then principal component, a biased
estimation method, is used in a way that it has additional scaling parameter which can
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accommodate a spectrum of explanatory variable standardizations. After that, by this scale
parameter , other biased estimation methods such as partial least squares, ridge and
Stein are explained. They can considerably reduce the variance of the parameter
estimation.

Keywords: Logistic regression; partial least squares; principal component;
quasistandardization; ridge; Stein; weighted multicollinearity.

1. INTRODUCTION

Extending previous research on multicollinearity and regression, this study analyzes a
primary data set according to special condition of response variable which is binary. Least
squares method is not proper Rather, it is proposed that logistic regression is appropriate
model for this research. This data set is related to the Middle East’s largest producer of flat
steel. Before fitting model, data are checked because of multicollinearity by mentioned
indicators in [1,2]. Multicollinearity makes model unstable, and the estimated parameters will
be inaccurate. Thus the interpretation of the relation between the response and each
explanatory variable in terms of odds ratios may be erroneous. It is also proposed some
unbiased methods to solve this problem and to estimate the parameters of this model, i.e.
principal component (PC), partial least squares (PLS), ridge and Stein.

Principal component analysis (PCA) was explained by [3]. [4] evaluated the relation between
PCA and some statistical techniques. [5] recognized an error in multivariate data by PCA. [6]
used the properties of PCA in least squares constrains. [7] explained nonlinear PCA. [8]
introduced a spectral of scale explanatory variables that is defined by scale parameter  and
is named quasistandardization. Scaling parameter values between zero and one lead to an
interpolation between correlation and covariance matrices. [8] used PC and
quasistandardization methods for a mine data set. [9] focused on detecting influential
observations in PC method and its structure. [10] applied PC method by paying attention to
constraints on correlation matrix.

Ridge regression was explained by [11], and [12] used ridge estimator in logistic regression.
[13,14] applied it in a probit regression model and partially linear model.

Stein estimator was introduced by [15] and [16] used it in multiple logistic regression. Also [2]
used ridge and Stein methods for a data set from lake acidification. [17] explained improved
Stein-type shrinkage estimators in multicollinearity condition.

[18] introduced PLS. [19] evaluated the relation between PLS regression and multiple factor
analysis and [20] continued it. [21] applied PLS method for a data set of Bordeaux wines
because of multicollinearity. [22] used Krylov sequences to compare PC and PLS methods
in some aspects. [23] introduced a new methodology to select variables for PLS method
based on the nearest correlation spectral clustering. [24] discussed dissimilarity PLS applied
to nonlinear modeling.

The study, therefore, uses quasistandardization method and PC logistic regression models
after identifying multicollinearity. Then, considering assessment indicators such as deviance
and sum of coefficients variance, the best  and the best model are selected. Then by using
this , other methods such as PLS, ridge and Stein are applied to estimate model
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parameters. Finally, according to this data set, the best method is identified to estimate the
model parameters.

This article consists of 3 sections. Section 1 is an introduction and gives a brief overview of
logistic regression, introduces weighted multicollinearity diagnostics, and defines
quasistandardization of explanatory variables. Section 2 explains logistic regression biased
estimation methods such as PC, PLS, ridge and Stein methods. Section 3 compares these
methods with a primary data set of the largest industrial company in the Middle East.

1.1 Logistic Regression

There are many fields of study such as medicine and epidemiology, in which it is very
important to predict a binary response variable, or equivalently the probability of occurrence
of an event (success), in term of the values of a set of explanatory variables related to it.

Let
pXXX ,...,, 21

be a set of continuous variables observed without error and let us consider n

times of observation of such variables that will be resumed in the matrix  
pnijx 

 . Let

  nyyy ,...,, 21 be a random sample of a binary response variable Y associated with the
observation in  , that is,  1,0iy , ni ,...,1 .  then, the logistic regression model is given by

iiiy   ni ,...2,1 (1.1)

where  is the expectation of  Y given  ippii xXxXxX  ,...,, 2211
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Where
p ,...,, 10
are the parameters of the model and
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Once the model has been estimated, its goodness of fit must be tested. The most usual
method to solve the test
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is based on the Wilks statistic (Deviance) defined as ln2 , with  that is the usual
likelihood-ratio statistic. The deviance is given by

    2
11

2 0

ˆ1
1

ln1
ˆ

ln2 




























  pn

Hn

i
i

i
i

i

i
i n

y
y

y
yMG 

 (1.3)

This statistic has approximately a chi-squared distribution.
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The diagonal matrix V contains variance of the estimated. Y values. The matrix VXX 
is named the information matrix. Denoted XVX ˆˆ  as estimated information matrix, in other

words SS ˆˆˆ  that XVS 2
1

ˆ  . Then we have   1ˆˆˆ arV .

1.2 Weighted Multicollinearity Diagnostics for Logistic Regression

The logistic model becomes unstable when strong dependence exists among explanatory
variables, so it seems that no variable is important when all others are in the
model(multicollinearity). To develop suitable diagnostics for multicollinearity and have a
standard of comparison, scaling of the information matrix is preferred. These diagnostics
were mentioned in [1,2].

1.2.1 Weighted condition number

Consider **
0 ,..., p as the ordered eigenvalues of *** ˆˆˆ SS  ,so that
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Large values of
jk  30 indicate ill conditioning.

1.2.2 Weighted variance proportion

Let
jum as the juth member of eigenvectors matrix of ̂ . The weighted proportion of variance

for the jth estimated coefficient can be expressed as

jj

uju
uj C
m *2 /

 

That 



p

u
juujj mC

0

21* . A small eigenvalue (relative to the maximum eigenvalue) responsible

for at least two large proportions suggests that weighted multicolinearity is damaging
desirable properties of the logistic regression. For example, if

32 and
34 are large (near

one), it will be related to multicollinearity where
4̂ and

2̂ variances will inflated.
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1.3 Quasistandardization of Explanatory Variables

Marx [8] introduced a class of PC estimators for generalized linear regression defined by
scaling parameter. The additional parameter allows a spectrum of standardized explanatory
variables which can result in interpolation between correlation and covariance matrices.
Choice of the scaling parameters depends on the researcher’s objectives for the model.
Consider  

pnijx 
 as a matrix of continuous explanatory variables, then define:

   
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Denoted  
pnijx 

 
,    1X . The parameter allows a spectrum of scaling. He

indicated that in practice it may seem unnatural to use parameter values outside the unit
interval.

2. BIASED LOGISTIC REGRESSION ESTIMATORS

Using Taylor series arguments, it can be shown that the maximum likelihood (ML) parameter
estimates are asymptotically unbiased. In making certain adjustments to ML, asymptotically
biased parameter estimates can be constructed. PC, PLS, ridge and Stein, asymptotically
biased estimators, are presented in this article.

2.1 A Continuum of Principal Component Estimators

Sample principal components (PCS) are orthogonal linear spans with maximum variance of
the

X matrix columns, denoted by
jj mXZ   , where

pmmm  ,...,, 21
are the eigenvectors of

the sample information matrix
 XVX ˆˆ  , which are associated with corresponding

eigenvalues
p   ...21

of the
̂ .

The logistic regression can be expressed in terms of PCS.

  ZMZXL 

As a result of the invariance property of ML estimates we have:

pcpc M ** ˆˆ
  

then, the prediction equation will be pcY *ˆ
 where  pcnpcpcpc **

2
*
1

* ˆ,...,ˆ,ˆˆ
  . This model in

terms of a specific subset (s) of principal components is,

           ssssss XMXZL   

Where we have



British Journal of Applied Science & Technology, 3(4): 748-763, 2013

753

     
pc
ss

pc
s M ** ˆˆ

   .

For different values of  we can have different PC estimators.

This method is able to handle multicollinearity among the explanatory variables. Also it can
make for stronger predictions. On the other hand, there is a difficulty to interpret the
coefficients of the new PC components. And this method is sensitive to the scales of
explanatory variables; they need to be normalized before computing the PC components.

2.2 Partial Least Squares Logistic Regression Estimator

2.2.1 Partial least squares regression

PLS regression is used to study the relationship between a numerical response variable and
a set of k explanatory variables in situations in which multiple regression is unstable or not
feasible at all (strong multicollinearity, small number of observation compared to the number
of variables, missing data). We can encounter the same kind of problems also in logistic
regression and, more generally when using a generalized linear model.

PLS regression defines PLS components given by linear spans of the explanatory variables
and uses them as new explanatory variables of regression model.

PC regression and PLS regression differ in the methods used in production of new
components. PC regression produces the PC given by the covariance structure between the
explanatory variables, while PLS regression produces the PLS components given by
covariance structure between the explanatory and response variables.

PLS method is able to model multiple response variables as well as multiple explanatory
variables. And it can handle multicollinearity among the explanatory variables. Also it is
robust in face of missing data and it can make for stronger predictions. On the other hand, it
is difficult to interpret the coefficients of the new PLS components. And because the
distributional properties of estimates are not known, the researcher cannot assess
significance except through bootstrap induction. Also there is no test model statistic [25].

2.2.2 PLS Generalized linear regression (PLS-GLR)

With this constraint that PLS components 



m

j
jhjh xwt

1

* are orthogonal, PLS generalized

linear regression of Y on
pxxx ,...,, 21

with m components is written as
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Where *
hjw are achieved by the covariance structure between Y and

jx . The parameter 
may be either the mean of a continuous Y, or the probability vector of the values taken by a
discrete variable Y. The link function g is chosen by the user according to the probability
distribution of Y and the model goodness of fit to the data.
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2.2.3 PLS-GLR algorithm

The algorithm consist of four steps:

1- Computation of the m PLS components
ht  mh ,...2,1 .

2- Generalized linear regression of Y on the m retained PLS components.
3- expression of PLS-GLR in terms of the original explanatory variables
4- Bootstrap validation of coefficients in the final model of PLS-GLR

All these steps were expressed in [21].

2.3 Ridge Logistic Regression Estimator

[16] suggested:

      ˆˆˆˆ 1
XVXkXVXkRidge 



(2.3)

The choice of the k is subjective, however [16] recommended a harmonic mean method,

 ˆˆ
1




pk .

Ridge method has fast and simple computations and interpretation of the coefficients is
clear.

2.4 Stein Logistic Regression Estimator

[16] suggested an extension of the [15] estimator for logistic regression. Consider shrinking
the ML estimate as follows:

MLStein c ˆˆ  (2.4)

Where 10  c . The purpose of Stein estimation is to shrink both the estimated parameter
vector, and the associated standard errors, by a simple scaling technique.

c is chosen, which minimizes the       


 ˆˆ2 ccLE criterion (with respect to c ) it will
be:

 1ˆˆˆ
ˆˆ








trace

c

Properties of Stein method is similar to the ridge method. And also there is no main
disadvantage for both of them.
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3. EXAMPLE

The objective of the study is to predict the suitable formability of steel sheets based on five
explanatory variables according to a primary data set of the Middle East’s largest industrial
complex.

1x : Yield strength ( 2/mmN ).

2x : Final tensile strength ( 2/mmN ).

3x : Silicon (percent).

4x : Aluminum.

5x : Nitrogen gas (percent).

Formality is checked by bending test with the angle of zero degree, and if there will no
cracks on the steel sheet it will be a success. The steel sheet data set includes 50
observations. At firs, the data set is evaluated about multicollinearity. The result is given in
Table (1).

The decomposition matrix has a last row of variables some are nearly one and also there is
a large condition number ( 30) with the smallest eigenvalue of the information matrix. Both
of them indicate multicollinearity. In Table (2) and (3) the effects of multicollinearity can be
seen on ML parameter estimators.
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According to p-value, only the explanatory variables
52 , xx are statistically significant at the

risk level of 0.1. Also we have a high percentage of misclassified responses (16%), that we
compute them by assigning to the most probable level of response. Then we compute PC,
PLS, ridge, Stein estimators.

For every  2.1,0 , PC estimator with one, two,…PCS with maximum variances and also
forward stepwise estimator are calculated, for example, in Figure (1) and (2), it can be seen.
Deviance value and sum of coefficient variances are displayed for  2.1,1,9.0,3.0 .
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By increasing every  2.1,0 , the reduction in the amount of sum of coefficients variance
and deviance is evident. We can show two previous Figures in other shapes (3) and (4).
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It can show PC estimators with 4 and 5 PCS have deviances near to deviance of ML
estimators. The sum of coefficients variances of these two estimators is a bit more than
other PC estimators, but these variances are less than deviances of ML estimator. Then we
select PC estimators with 4 and 5 PCS with 1 as candidates.

Also [26] considers that the best estimator for the parameter vector is before a sudden
increase of this variance. Then by paying attention to information in Table (4) we can select
PC estimators with 3 PCS as an another candidate.

Furthermore, we obtain PLS, ridge and Stein estimator with 1 .

3.1 PLS Logistic Estimator

At first we compute PLS components. We should fit regression of response variable on
every explanatory variable. Due to the results of these regressions, in Table (5), all
explanatory variables are significant at the risk level of 0.1.
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Then we have component
1t :

 
54321

22222

54321
1

5062.03401.03625.06051.03613.0
8512.66026.49059.418932.88894.4
8512.66026.49059.41893.88894.4

xxxxx

xxxxx
t








For computing 2t , we should fit regression of response variable on
1t and every explanatory

variable. The results of these regressions are reported in Table (6).

Considering p  values, none of the explanatory variables is significant for 2t structure. Then
the model has one component. After fitting regression of response variable on

1t , we rewrite

1t based on explanatory variables. The result is reported in Table (7).

Moreover we apply mentioned non-parametric validation with B = 1000 for coefficients of
PLS logistic regression according to the steel sheets data set. It is displayed in Figure (5).



British Journal of Applied Science & Technology, 3(4): 748-763, 2013

760

Regarding confidence intervals and having no zero in these intervals, it can show that all
explanatory variables are significant. Finally all estimators of parameters become non Quasi
standardized.

In Tables (8) and (9) the results such as estimated parameters and standard deviation of
estimators based on all mentioned methods are reported, also in Table (10), we have
deviance and sum of coefficients variance for estimators.
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4. CONCLUSION

 In the section (4), Table (9) shows standard deviation for
0 of all estimators still are

inflated, especially for forward stepwise and PLS logistic estimators, that are the
same as it is for ML estimator.

 Table (8) shows that forward stepwise and Stein have the same sign. Also PLS
logistic, PC with 5 PCS and ridge estimators have another same sign.

 Table (10) shows by order, forward stepwise, ridge, PLS logistic, Stein and PC
estimators with 5, 4, 3 PCS have the less deviances after ML estimator. Also by
order ML, forward stepwise, PLS logistic, PC estimators with 5, 4 PCS, Stein, ridge
and PC estimator with 3 PCS have the maximum sum of coefficients variances.

Choice of which method is better depends on the purpose of the model. Good parameter
estimates and good prediction are two different aspects of the model. With complex data, we
do not expect a single model to be the best for all purposes.

According to this steel sheet data set, PC estimator with 3 PCS, ridge and Stein with regard
to deviance, have deviances near to ML estimator’s deviance and their sum of coefficients
variances are much less than that of ML estimator.
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Multicollinearity may lead to have parameter estimation with sign that has conflict with
expected sign in reality. Based on this steel data set, multicolinearity has no effect on the
sign of ML estimator. For example, according to expert opinions we expect

1x (yield strength)
and

2x (final tensile strength) appear with negative signs in model. Consequently, it seems
Stein estimator is the most reliable one among the three mentioned estimators (Stein, ridge
and PC estimator with 3 PCS).

All these methods can substantially reduce the variance of the estimated coefficients and
prediction variance for future observations outside the mainstream of weighted
multicollinearity.
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