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ABSTRACT
This paper addressed an important variant of two-dimensional
cutting stock problem. The objective was not only to minimize
trim loss, as in traditional cutting stock problems, but rather to
minimize the number of machine setups. This additional objec-
tive is crucial for the life of the machines and affects both the
time and the cost of cutting operations. Since cutting stock
problems are well known to be NP-hard, we proposed an
approximate method to solve this problem in a reasonable
time. This approach differs from the previous works by gener-
ating a front with many interesting solutions. By this way, the
decision maker or production manager can choose the best
one from the set based on other additional constraints. This
approach combined a genetic algorithm with a linear program-
ming model to estimate the optimal Pareto front of these two
objectives. The effectiveness of this approach was evaluated
through a set of instances collected from the literature. The
experimental results for different-size problems show that this
algorithm provides Pareto fronts very near to the optimal ones.

Introduction

The primary objective in cutting stock problem is to minimize material
waste. In real applications, it is often necessary to consider auxiliary objec-
tives, one of which is to reduce the number of different cutting patterns
(setups). In many wood, paper and steel industries, the cutting process
imposes a new setup every time a different pattern is cut (Enrico, Rosa,
and Paolo 2014), (Kallrath et al. 2014), (Yaodong, Cheng, and Yi 2015),
(Mahdi and Khalil 2016). This additional objective is crucial for the life of the
machines and is important in determining the cutting operations cost. It is
desirable to have a cutting plan with a reduced number of patterns, on the
one hand, and to keep the waste of material as low as possible, on the other.
Unfortunately, this deals with two conflicting objectives.
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In this work, we addressed a bi-criteria decision for an important variant
of the two-dimensional cutting-stock problem. The objectives were to mini-
mize both the number of machine setups and the waste of material.

Before providing the details of this problem and the details of the elabo-
rated algorithm, we briefly reviewed the resolution techniques available in the
literature.

The large number of columns in practical cutting problems is one of the
difficulties that was to be taken into account. In Haessler (1975), a pattern is
selected, if it satisfies the aspiration levels of waste and frequency.

Farley and Richardson (1984) modeled a pattern minimization cutting
stock problem as a single objective, the sum of patterns and setup costs.

Vanderbeck (2000) proposed a quadratic integer programming formula-
tion to minimize the number of setups in the one-dimensional case. He
proposed a decomposition-based method and a branch-and-bound proce-
dure to solve their problem.

Umetami, Yagiura and Ibaraki (2003) proposed a heuristic that searches
a solution which minimizes the quadratic deviation of item cuts from the
requirements after the number of different patterns is fixed to a predefined
value. They reviewed some other works that combined two patterns into one.

Horacio and Marcelo (2006) proposed a hybrid procedure to obtain
a reduced number of different patterns. Initially, patterns with limited
waste that fulfill the demands of at least two items are generated. The
problem is reduced and the residual problem is solved. Then, pattern reduc-
tion techniques based on local search are applied starting with the generated
solution. The scheme is simple and can be used in cutting stock problems of
any dimension. Variations of the procedure are also indicated.

Mellouli et al. (2010) proposed a mixed integer linear formulation to
reduce the total cost, the sum of patterns and setups costs. This formulation
is used for small and medium size problems, for large size, an approximate
approach was presented and evaluated.

Mobasher and Ekici (2013) developed a mixed integer linear program
model and proposed two local search algorithms and a column generation-
based heuristic algorithm in order to minimize total production cost includ-
ing both material and setup costs.

Kallrath et al. (2014) developed new column generation approaches inte-
grated into an Enterprise Resource Planning system to solve a variety of
cutting stock problems occurring in real-world problems. Among them is the
simultaneous minimization of the number of rolls and the number of
patterns while not allowing any overproduction.

Cui, Cui and Zhao (2015) presented a pattern-set generation algorithm. It
also generates a set of patterns in the first stage and solves an Integer Linear
Problem model over the generated patterns in the second stage. The pattern-
set generation algorithm uses a residual heuristic to produce the patterns.
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Yaodong, Cheng and Yi (2015) presented an integer linear programming
model to minimize the sum of material and setup costs over a given pattern set,
and described a sequential grouping procedure to generate the patterns in the set.

The fact that, most, heuristics have been proposed in the literature to solve
this kind of problem can be explained. Indeed, the bi-objective problem
version is more difficult from solving each objective alone. Moreover, the
cutting stock problem which considers only one of these two objectives is
already NP-hard (Fekete, Schepers, and Veen 2007), (Enrico, Rosa, and Paolo
2014), (Mahdi and Khalil 2016), (Ayadi et al. 2017).

From these heuristics, the genetic algorithm is the most commonly used.
With a long history of development, it was widely used for single-objective
cutting stock problems (Godfrey and Michael 2003), (Leo and Wallace 2004),
(Wong, Mok, and Kwong 2007), (Jose 2015) and for multi-objective cutting
stock problems (Leung, Wong, and Mok 2008), (Ramiro et al. 2007), (Yanira,
Gara, and Coromoto 2016).

Genetic algorithm has gained an increasing attention among researchers in
recent years for the multi-objective problems. Once it is algorithmically efficient
because the discovery of one solution close to the Pareto-optimal front pulls
a number of other populationmembers towards the Pareto-optimal front, thereby
making a parallel and simultaneous discovery. On the other hand, it is able to find
multiple Pareto-optimal solutions in one single simulation run. It has two distinct
goals: convergences to the true Pareto-optimal front andmaintains diversity in the
non-dominated solutions. It differs from the standard genetic algorithm for single
objective problems in the way that fitness is assigned to each solution in the
population (Geetha and Muthukumaran 2013), (Radhia, Slim, and Lamjed 2016).

For these reasons, we propose to use this powerful tool to solve an
important variant of a bi-criteria decision of the two-dimensional cutting-
stock problem.

In this work, we proposed an innovative genetic algorithm to estimate the
optimal Pareto front for the following two conflicting objectives: minimize
material waste and the number of setups machine. This approach is inter-
esting because it differs from the previous works by the generation of a front
with many solutions. Therefore, the decision maker or production manager
can choose the better one from the set of the non-dominated solutions based
on other additional constraints such as the number of available operators to
prepare setups machine, for instance, if a set of operators are absent, the
production manager selects the solution with a low number of setups
machine to answer the due date of the customer demands. The remaining
of this paper was organized as follows: Section 2 described the problem and
the mathematical formulation proposed. Section 3 introduced the details of
the genetic algorithm elaborated. Section 4 revealed and discussed the experi-
mental results. Finally, the concluding remarks were forwarded in Section 5.

APPLIED ARTIFICIAL INTELLIGENCE 533



Problem Formulation

The machine presented in Figure 1 is used to cut rolls of material with standard
widthsWk (k =1,…, K), into small rectangles with dimensions wi×li (i =1,…, N)
and quantities di (i =1,…, N). The cutting patterns must satisfy the following
constraints related to this machine. First, the number of available levels allows
cutting at most six rectangle types in the same patterns. Second, small rectangles
are obtained by guillotine and oriented cuts.

For this problem, it is required to estimate the set of non dominated
solutions for two objectives. The first is to minimize the amount of material
needed to satisfy customer orders. The second is to minimize the number of
machine setups by reducing the number of used patterns.

In order to formulate the mathematical model of this problem the following
notations related to cutting orders, roll sizes and cutting patterns were introduced.

Sets and parameters

Before providing the mathematical formulation, it is necessary to deter-
mine the set of feasible patterns Vkj that satisfy the following constraints:

XN
i¼1

Vkji � 6 k ¼ 1; 2 . . . ;K; j ¼ 1; 2 . . . ; Jkð Þ (1)

Wkþ1 <
XN
i¼1

Vkji wi � Wk k ¼ 1; 2 . . . ;K � 1; j ¼ 1; 2 . . . ; Jkð Þ (2)

XN
i¼1

VKji wi � WK j ¼ 1; 2 . . . ; JKð Þ (3)

xb c : Greatest integer lower than x

xd e : Lowest integer greater than x

N : Number of pieces orders to be fulfilled

K : Number of available rolls widths in stock

wi : Width of the i th pieces order (i =1,…, N), arranged in a decreasing width (w1 ≥ w2 ≥…≥wN)

li : Length of the i th pieces order (i =1,…, N)

di : Demand of the i th pieces order (i =1,…, N)

Wk : Width of the k th width roll (k =1,…, K), arranged in a decreasing width (W1 > W2 >…>WK)

Vkji : Number of units of width wi to be cut according to the j th pattern from the k th width roll

Vkj : j th cutting pattern of the k th roll width (with independence of the length)

Lkj : Length produced with the pattern Vkj.
Ykj : Equal to 1, if the pattern Vkj is used (Lkj>0) and 0 otherwise (Lkj =0)

Xkji : denotes the integer value Lkj=li
� �

if Vkji >0 (hence, XkjiVkji is the number of pieces of width wi

contained in pattern Vkj through the length Lkj.

Jk : Number of patterns of Wk roll width

M : Huge positive constant, which can be calculated as M ¼PN
i¼1

li di
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Constraints (1) are technological constraints related to the number of levels
in the machine. Constraints (2) and (3) are used to select for each pattern Vkj

the nearest greater width roll.
Objective functions:
Area of the material needed:

F1 ¼
XK
k¼1

Wk

XJk
j¼1

Lkj

 !
(4)

Number of used patterns (setups):

F2 ¼
XK
k¼1

XJk
j¼1

Ykj

 !
(5)

Under these notifications, we can formulate a multi-objective Mixed Integer
Linear Problem (MILP) for the two-dimensional cutting-stock problem
described above, in the following form:

Minimize ½F1 ; F2� (6)

Subject to

XK
k¼1

XJk
j¼1

XkjiVkji � di ði ¼ 1; 2 . . . ;NÞ (7)

Transversal 
knives

Longitudinal 
knives

Wk

li

wi

Not used 
knives

Figure 1. Cutting process schematic representation.
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li Xkji � Lkj k ¼ 1; 2 . . . ;K; j ¼ 1; 2 . . . ; Jk; i ¼ 1; 2 . . . ;Nð Þ (8)

Lkj � M Ykj k ¼ 1; 2 . . . ;K; j ¼ 1; 2 . . . ; Jkð Þ (9)

Lkj � 0Xkji 2 Zþ Ykj 2 f0; 1g (10)

Equations (4), (5) and (6) represent the objectives to minimize. Constraints
(7) guaranty the demand orders satisfaction. Constraints (8) link the lengths
to produce Lkj with the number of pieces Xkji. Constraints (9) impose for
each used pattern Vkj (Lkj>0) to have Ykj equal to one. Constraints (10)
introduce non-negativity and integrality conditions.

Illustrative Example

Four rectangular pieces with the specifications shown in Table 1 are to be cut
from rolls with two widths: W1 =2.5 m; W2 =2 m.

The set of feasible patterns Vkj that responds to constraints (1), (2) and (3)
with the associated roll widths were presented in Table 2 (Mellouli and
Dammak 2008).

The optimal Pareto Front is displayed in Figure 2
To obtain the non dominated solutions we could proceed by considering

single objective version F1 in which the number of setups is given as a hard
constraint.

- Solution with two setups: F2= 2 (see Figure 3):

L11 ¼ 1430Y11 ¼ 1X111 ¼ L11=l1b c ¼ 650X112 ¼ L11=l2b c ¼ 621

L18 ¼ 400Y18 ¼ 1X183 ¼ L18=l3b c ¼ 200X184 ¼ L18=l4b c ¼ 285

F1 ¼ 2:5x 1430þ 400ð Þð Þ ¼ 4575

Table 1. Data example.
Item Number (It N) Width wi Length li Demand di
1 1.3 2.2 650
2 1.2 2.3 600
3 1.2 2 200
4 0.5 1.4 380

Table 2. Feasible patterns with the associated roll widths.
Vkj V11 V12 V13 V21 V14 V15 V16 V22 V17 V18 V23 V19 V24

1(V111) 1 1 1 0 0 0 0 0 0 0 0 0
1(V112) 0 0 0 2 1 1 1 0 0 0 0 0
0(V113) 1 0 0 0 1 0 0 2 1 1 0 0
0(V114) 0 2 1 0 0 2 1 0 2 1 5 4

Wk 2.5 2.5 2.5 2 2.5 2.5 2.5 2 2.5 2.5 2 2.5 2
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- Solution with three setups: F2= 3 (Figure 4):

L11 ¼ 1430Y11 ¼ 1X111 ¼ L11=l1b c ¼ 650X112 ¼ L11=l2b c ¼ 621

L17 ¼ 200Y17 ¼ 1X173 ¼ L17=l3b c ¼ 100

L19 ¼ 106:4Y19 ¼ 1X194 ¼ L19=l4b c ¼ 76

F1 ¼ 2:5x 1430þ 200þ 106:4ð Þð Þ ¼ 4341

- Solution with four setups: F2= 4 (Figure 5):

L11 ¼ 1030:4Y11 ¼ 1X111 ¼ L11=l1b c ¼ 468X112 ¼ L11=l2b c ¼ 448

L12 ¼ 400:4Y12 ¼ 1X121 ¼ L12=l1b c ¼ 182X123 ¼ L12=l3b c ¼ 200

L14 ¼ 174:8Y14 ¼ 1X142 ¼ L142=l2b c ¼ 76

Trim loss

W=2.5m; L=1430m

It N1

It N2

W=2.5m; L=400m

It N3

It N4
It N4

Figure 3. Optimal solution with two setups.

4575

4341

4280
4250

4300

4350

4400

4450

4500

4550

4600

1 2 3 4 5

F2

F1

Figure 2. Optimal Pareto front.

Trim loss

W=2.5m; L=1430m

It N1

It N2

W=2.5m; L=106.4m

It N4
It N4
It N4
It N4
It N4

W=2.5m; L=200m

It N3

It N3

Figure 4. Optimal solution with three setups.
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L19 ¼ 106:4Y19 ¼ 1X194 ¼ L19=l4b c ¼ 76

F1 ¼ 2:5x 1030:4þ 400:4þ 174:4þ 106:4ð Þð Þ ¼ 4280

The determination of the optimal Pareto Front is restricted for low size
problems. For problems of medium or large sizes, it is necessary to use
heuristics and meta-heuristics such as genetic algorithm to estimate the
optimal Pareto Front.

Genetic Algorithm

The main idea of this algorithm is to solve many problems with good and
small number of patterns than to solve the basic problem with very high
number of patterns. Genetic tools are used to improve the front quality
through the successive generations until the stopping criterion is reached.

The flow chart presented in Figure 6 summarizes these steps.
This section presents the different phases of this genetic algorithm: chromo-

some representation, initial generation, feasibility and correction, evaluation
of the objectives, fitness evaluation, crossover, mutation and Stopping criteria.

Chromosome Representation

An individual with T patterns is represented by a non-negative integer value
matrix where the number of rows is the number of customer orders N. And
the number of columns is the number of cutting patterns T.

Initial Generation

The initial generation is randomly generated by a set of individuals respect-
ing the following conditions:

- The number of pattern T must be between Tmin and N. Tmin represents
an estimation of the lowest number of patterns that allows the generation of
feasible solutions (Alves and Carvalhoa 2007).

Trim loss

W=2.5m; L=1030.4m

It  N1

It  N2

W=2.5m; L=174.8m

It N2

It N2

W=2.5m; L=400.4m

It N1

It N3

W=2.5m; L=106.4m

It N4
It N4
It N4
It N4
It N4

Figure 5. Optimal solution with four setups.
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- The width of each pattern has to be smaller than the biggest roll width.
- Each type of customer order appears at least once in one of the cutting patterns.

Feasibility and Correction

In our algorithm the recombination operators applied cannot guarantee the
feasibility of the solutions, the number of unfeasible solutions in a population
may easily grow as the algorithm progresses. Thus, we proposed that unfea-
sible solutions be repaired instead of being rejected. To ensure a feasible
solution, it is enough, considering the chromosome representation adopted
in our algorithm, that each type of customer order appears at least once on
a cutting pattern. Once a missing type is found in a given solution,
a correction procedure is called upon to repair it.

Evaluation of the Objectives F1, F2

This phase consists in calculating for each individual the lengths Lkj relative
to its patterns T. The objective is to satisfy the customers’ orders with the
minimal area of material F1. At the end, F2 is updated by computing the
number of used patterns.

Phase 3: Objectives evaluation (F1; F2) of each individual 
F1= Area of the solution 

F2= Number of used pattern from the set of pattern T

Phase 2: Random generation of the initial population by 
individuals with reduced and unfixed number of patterns T)

Phase 4: Evaluation of each individual (Fitness Evaluation)          

Phase 6: Recombination: Selection, Crossover and Mutation 

Phase 7: Objectives evaluation (F1; F2) of each child

Phase 8: Evaluation of each child (Fitness evaluation)      

Phase 5: Stopping 
criteria satisfied

Best Pareto 
front 

No

Phase 1: Chromosome representation

Yes

Phase 9: Updating a new generation with the best individuals             
(Best Pareto front)

Figure 6. Flowchart of the proposed genetic algorithm.
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Fitness Evaluation

The fitness of each individual was evaluated through the Pareto Fitness
Genetic Algorithm (PFGA) introduced by Elaoud, Loukil, and Teghem
(2007). This algorithm has shown high efficiency in solving multiple objec-
tive optimization problems.

Crossover and Mutation

Crossover is a genetic operator used to vary chromosomes from one genera-
tion to the next. It represents the process of taking more than one parent
solution and producing a child solution from them. Many crossover techni-
ques were presented in the literature such as One-point crossover, Two-point
crossover, Cut and splice, partially matched crossover (PMX), cycle crossover
(CX), order crossover operator (OX1)… (Aimin et al. 2011), (Geetha and
Muthukumaran 2013).

For this problem the “Cut and splice” crossover was chosen. This is
justified by the fact that it changes the length of the children strings. The
reason for this difference is that each parent string has a separate choice of
crossover points which perform diversification for the two-objective
problems.

Two variants of “Cut and splice” crossover are proposed: the First Crossover
Operator (FCO) with one point and the Second Crossover Operator (SCO)
with two points.

These crossovers work as follows (Figure 7):

● First, parents are chosen through the roulette wheel selection (RWS)
(Rennera and Ekart 2003).

Parents

1 1 0 1 0 2 0 3

2 0 4 3 2 1 0 0

1 0 0 X 0 0 1 2 1

0 4 1 0 1 0 2 1

2 0 1 0 3 1 0 1

(T=3) (T=5)
Children

1 1 0 3 1 0 2 0

2 0 0 0 3 2 1 4

1 0 2 1 0 0 1 0

0 4 2 1 0 1 0 1

2 0 0 1 0 3 1 1

(T=4) (T=4)

Parents

1 1 0 1 1 0 2 0 3

2 0 4 3 2 1 0 0

1 0 0 X 0 0 1 2 1

0 4 1 0 1 0 2 1

2 0 1 0 3 1 0 1

(T=3) (T=5)
Children

1 0 2 0 0 1 1 3

2 2 1 0 4 3 0 0

1 0 1 2 0 0 0 1

0 1 0 2 1 0 4 1

2 3 1 0 1 0 0 1

(T=5) (T=3)

First Crossover Operator Second Crossover Operator

Figure 7. First and second crossover operator.
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● Second, each parent is divided randomly into two and three portions for
the FCO and the SCO, respectively.

● Third, the second portion is exchanged between the two parents in order
to generate two children for the FCO, respectively; the middle portion is
exchanged for the SCO.

● Fourth, a procedure is called to check the feasibility and to repair the
unfeasible children.

In order to introduce genetic diversity, mutation is designed with one of the
two following possibilities:

● Replace a cutting pattern by another which is randomly generated.
● If the number of cutting patterns is greater than Tmin, eliminate one
from the matrix.

After mutation, the correction procedure is called to check the feasibility of
the solutions and repair the unfeasible ones.

Stopping Criteria

The algorithm is stopped after 2000N evaluations of the fitness function, then
for a population of 20N individuals, the algorithm is stopped after 100
generations and returns the best solution. Otherwise, the algorithm is
stopped autonomously after 10 successive generations if there is no
amelioration.

It is worth noting that an external set is created to maintain better
solutions in the whole evolution process. This set is updated at each genera-
tion by introducing new non-dominated solutions and removing the domi-
nated ones. The final Pareto front will derive from this set.

Implementation and Experimental Results

The objectives of this study were to determine the better parameters of the
elaborated algorithm and evaluate its effectiveness.

Selection of the Genetic Algorithm Parameter Values

The objective of this part was to find the better genetic algorithm parameter
values.

To this end, extensive testing was performed. The parameters that were
assessed in this series of experiments were:

● Size of the population (SP): Two population sizes were used (10N and 20N).
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● Crossover Operator (CO): Two crossover operator types were used. The
FCO with one point for each parent, and the SCO with two points for
each parent.

● Probability of mutation (Pmut): values between 0 and 1 indicate the
probability that a newly generated solution string is generated through
one of the mutation possibilities. Two probabilities of mutation are
performed 0.1 and 0.15.

An experimental study was elaborated to perform the genetic algorithm
parameters. The better results were obtained with the following configuration
(SP = 20N, SCO, Pmut = 0.15).

This means that this genetic algorithm works better with the higher popula-
tion size, the higher crossover points and the higher mutation probability,
which is in agreement with the basically known concepts of genetic algorithms.
The following experiments would be achieved with these parameters.

Evaluation of the Genetic Algorithm Effectiveness

Quality of the Fronts
The objective of this study was to evaluate the effectiveness of this genetic
algorithm. A number of experiments have been carried out by the means of
18 problems collected from the literature (Benati 1997).

Problem 1 (N = 17), Problem 2 (N = 12), Problem 3 (N = 22). For the first
and the second problems, the test was carried out with the following sets of
roll widths: A1 = (1.33), A2 = (1.33;1.25), A3 = (1.33;1.25;0.77), B1 = (1.15),
B2 = (1.15;1.05), B3 = (1.15;1.05;1.01).

For the third problem, the test was carried out with the following sets of
roll widths: C1 = (1.33), C2 = (1.33;1.12), C3 = (1.33;1.12;1.05) and B1,
B2, B3.

The quality of this genetic algorithm was evaluated through the value of
the relative error between the optimal front Pareto and the front Pareto
generated through the genetic algorithm.

VRE ¼ 1
ðN � Tmin þ 1Þ

XN
T¼Tmin

F1ðTÞ � F1�ðTÞ
F1�ðTÞ

where VRE, F1(T) and F1*(T) denote respectively, the value of the relative
error, the value of the better solution generated for the first objective with
T cutting patterns and the value of the optimal solution generated by
CEPLEX solver for the first objective with T cutting patterns.

The proposed genetic algorithm was implemented with MATLAB 7.6. All
experiments were run in the Windows 8 environment on a desktop PC with
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Intel (R) Core (TM) i3-3120M, CPU 2.5 GHz Processor. Note that this
algorithm was executed for three runs for each instance of problem.

The experimental results are presented in Table 3.
The comparison of the results given by this genetic algorithm with the

optimal fronts Pareto shows the great success of this algorithm to generate
very close fronts Pareto to the optimal ones because the value of the relative
error (VRE) in % does not exceed a rate of 2% with an average of 1.2%.

Considering only the first objective, this approach suggests competitive
solutions to those proposed by Rinaldi and Franz (2007) with 2% VRE
average.

The results obtained for each example through the three runs show the
stability of this algorithm because the difference between the highest and the
lowest values of the relative error (VRE) in % for each example does not
exceed a rate of 1%.

The average value of the relative error (VRE) in % for the first problem
decreases from A1 to A3. This can be explained by the number of available
rolls for A1, A2 and A3 which is equal to 1, 2 and 3, respectively. The
increase of the number of available rolls from A1 to A3 increases the number
of patterns and reduces the trim loss which influences positively the quality
of the fronts. This remark was confirmed by the results obtained with (P1-B1,
P1-B2, P1-B3), (P2-A1, P2-A2, P2-A3), (P2-B1, P2-B2, P2-B3), (P3-B1, P3-
B2, P3-B3) and (P3-C1, P3-C2, P3-C3).

Figure 8 presents the evolution of the value of the relative error (VRE) in %
through the generations of the following problems P1-A1, P2-A2 and P3-B1.
The common fact between these figures is the high and continuous decrease of

Table 3. Experimental results.

Code

VRE (%)

First run Second run Third run Average

P1-A1 1.42 1.37 1.54 1.44
P1-A2 1.11 1.28 1.28 1.22
P1-A3 1.07 0.98 1.14 1.06
P1-B1 1.37 1.56 1.64 1.52
P1-B2 1.33 1.24 1.24 1.27
P1-B3 1.22 1.19 1.19 1.20
P2-A1 1.08 1.19 1.32 1.20
P2-A2 0.78 0.74 0.95 0.82
P2-A3 0.72 0.74 0.83 0.76
P2-B1 0.94 1.12 0.98 1.01
P2-B2 0.7 0.86 0.92 0.83
P2-B3 0.76 0.68 0.76 0.73
P3-B1 1.96 1.82 1.39 1.72
P3-B2 1.14 1.25 1.31 1.23
P3-B3 1.24 1.11 1.03 1.13
P3-C1 1.82 1.89 1.97 1.89
P3-C2 1.62 1.53 1.53 1.56
P3-C3 1.22 1.13 1.04 1.13
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the VRE for the first generations and the stagnation with a low decrease for the
last generations. This is explained by the fact that the initial population is
generated randomly then we have more chances to develop the quality of the
fronts for the first generations. With the progress of the algorithm the generated
fronts will be closer and close to the optimal one, then the chance to perform the
solutions and the fronts will be very small. As a result, we see a low decrease and
a stagnation of the VRE for the last generations. This justifies the additional
stopping criteria: the algorithm stops after a set of generations without any
amelioration.

Computing Time
In order to evaluate the computing time (CT) of this approach compared to
the computing time of the exact method with a CPLEX solver, a set of
experiments were elaborated with different size problems. The results are
presented in Table 4.

Table 4 shows that the proposed genetic algorithm solves problems of
different sizes in reasonable time. However, the exact approach with CPLEX
solver is limited for low-sized problems. This study proves the effectiveness
of the proposed genetic algorithm.
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Figure 8. Evolution of VRE (%) for P1-A1, P2-A1 and P3-B1.

Table 4. Computing time with the elaborated genetic algorithm and CPLEX solver.

Problem Number N K

Average CT

Genetic algorithm CPLEX solver

1-2-3 10 1-2-3 2 min 11 sec 9min 1 sec
4-5-6 15 1-2-3 4 min 6 sec 307 min 10 sec
7-8-9 20 1-2-3 5 min 3 sec 1836 min 16 sec
10-11-12 30 1-2-3 15 min 12 sec OM
13-14-15 40 1-2-3 31 min 19 sec OM

OM: out of memory
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Conclusion

In this paper, we introduced a general version of the cutting stock problem,
called Cutting Stock Problem with Setups. Our goal was to minimize both the
material waste and the setup number for industrial applications with two-
dimensional guillotine oriented cutting-stock problem. This goal is suitable
for a wide range of problems appearing in production and manufacturing
companies. A front with many solutions helps the decision maker to select
the best one based on his needs. When the raw material is cheap or when the
number of operators to prepare the setups is low, a solution with a low setup
number is highly recommended. When the raw material is expensive,
a solution with low material waste is preferred.

We initially developed a mixed integer linear model with two objectives.
The first goal was to reduce the material waste while the second was to
minimize the setup number. Then, we proposed an innovative algorithm
meant to generate good front solutions in a reasonable time for this NP-
hard problem. This algorithm combines a genetic algorithm with a linear
programming model. Its main idea was to use genetic algorithm tools to
ensure diversification and intensification for better populations and better
solutions. To enhance our quest, a crossover with unequal-length segments
exchange and a fitness function penalizing crowded and dominated regions
were used.

Full experiment design was elaborated to identify better combination
parameters. The numerical results show that this algorithm generates, in
a reasonable time, a good front which is very close to the optimal one (the
VRE does not exceed 2%).
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