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Abstract

In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in
cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder
for r #0 is solved directly. The Poisson equation is approximated by fourth-order finite differ-
ences and the resulting large algebraic system of linear equations is treated systematically in or-
der to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s
equations with known analytical solutions and the numerical results obtained show that the me-
thod produces accurate results.
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1. Introduction

The three-dimensional Poisson’s equation in cylindrical coordinates (r,6,z) is given by
1

U,r+%Ur+r—2U6€+UZZ: f(r.6,2) €))

has a wide range of application in engineering and science fields (especially in physics).
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In physical problems that involve a cylindrical surface (for example, the problem of evaluating the tempera-
ture in a cylindrical rod), it will be convenient to make use of cylindrical coordinates. For the numerical solution
of the three dimensional Poisson’s equation in cylindrical coordinates system, several attempts have been made
in particular for physical problems that are related directly or indirectly to this equation. For instance, Lai [1]
developed a simple compact fourth-order Poisson solver on polar geometry based on the truncated Fourier series
expansion, where the differential equations of the Fourier coefficients are solved by the compact fourth-order finite
difference scheme; Mittal and Gahlaut [2] have developed high order finite difference schemes of second- and
fourth- order in polar coordinates using a direct method similar to Hockney’s method; Mittal and Gahlaut [3]
developed a second- and fourth-order finite difference scheme to solve Poisson’s equation in the case of cylin-
drical symmetry; Alemayehu and Mittal [4] have derived a second-order finite difference approximation scheme
to solve the three dimensional Poisson’s equation in cylindrical coordinates by extending Hockney’s method,;
Tan [5] developed a spectrally accurate solution for the three dimensional Poisson’s equation and Helmholtz’s
equation using Chebyshev series and Fourier series for a simple domain in a cylindrical coordinate system;
lyengar and Manohar [6] derived fourth-order difference schemes for the solution of the Poisson equation
which occurs in problems of heat transfer; lyengar and Goyal [7] developed a multigrid method in cylindrical
coordinates system; Lai and Tseng [8] have developed a fourth-order compact scheme, and their scheme relies
on the truncated Fourier series expansion, where the partial differential equations of Fourier coefficients are
solved by a formally fourth-order accurate compact difference discretization. The need to obtain the best solu-
tion for the three dimensional Poisson’s equation in cylindrical coordinates system is still in progress.

In this paper, we develop a fourth-order finite difference approximation scheme and solve the resulting large
algebraic system of linear equations systematically using block tridiagonal system [9] [10] and extend the
Hockney’s method [9] [11] to solve the three dimensional Poisson’s equation on Cylindrical coordinates system.

2. Finite Difference Approximation
Consider the three dimensional Poisson’s equation in cylindrical coordinates (r,¢9, z) given by
2 2 2
(ZTLzJ %%—l: riz% 6678: f(r,6,z) onD

and the boundary condition

U(r,6,z)=g(r,0,z) on C ¥))
where C isthe boundary of D and D is
D, =

D, = ‘R R < 2
{(r.6,2):R,<r<R,a<z<b,6,<0<86,6, <6, < 2r} and B, ={(r,6,2):R, <r<R,a<z<b,0<0 <2n]

Consider Figure 1 as the geometry of the problem. Let u(r,0, z) be discretized at the point (ri,ej , zk) and
for simplicity write a point (r,,6;,2,) as (i,j,k) and u(r,6;,z,) as u,;,.

Assume that there are M points in the direction of r, N pointsin @ and P points inthe z directions to form
the mesh, and let the step size along the directionof r be Ar,of 0 be AG and z be Az.

Here 1, =R, +iAr,0, =6, + jAO and z, =a+kAz

Where i=12,---,M,j=12,---,N and k=1,2,---,P.

When r =0 isan interior or a boundary point of (2), then the Poisson’s equation becomes singular and to take
care of the singularity a different approach will be taken. Thus in this paper we consider only for the case r 0.

Using the approximations that
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Figure 1. Portion of a cylinder.
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Now using (3), (4) and (5), we get (Refer the work of Mittal and Ghalaut in [2])

From (1) consider only the approximation of the sum of the first and the third terms, that is, the sum of
o’V and L o°U
or’ r? 06°

FU 15U
o' 1 o0% )

1 w 1) 5w
2 {—20[1+n—2jui,j,k +2[5—r—2j(ui+1ijk +U )+2[r_—2—1j(ui,j+lyk +ui,j_lvk)

o 1(e* 1 &°
+(1+F](Ui+1,j+l,k +Uip ok TV ke tYi )} ( j
i

R _+__
12{ or* r?06°

(6)

((Ar)zaaTzz+(Ae)2 szui,j_k +O((Ar)4 +(A9)4)

00*

(Ar)
where o= 5
(40)

Again from (1) consider only the approximation of the sum of the first and the fourth terms, that is, the sum of
o°U oU

> and —-,
or oz

and we get

O,
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GRYUNGLY!
+
or®  oar? )
ijk
2
1 Ar
= Hl"' ( ) J(Uiﬂ,j,kﬂ Ui ks tYin e +Ui—1,j,k—l)

- 2[5-@}(@%” Uy )+ 2(5%—1J(Ui,,—+1,k +U, 1 )—20[1+ (Ar)z ]um]
(Az) (

(A2)
1(a* &2 2 0° 2 0? 4 4
-—| —+— || (Ar) —+(Az) — |U, ., +O[(Ar) +(Az
12(&.2 822j(( ) 6r2 ( ) 822 i,jk (( ) ( ) )
Once again from (1) consider only the approximation of the sum of the second and the fourth terms, that is, the
107U o’V

sum of =—— and ; to get
r? 067 a8

10U U
oot ot ).,

1 1 1 5 1
:El[(ﬁAQ)z + (AZ)Z ](Ui,ju,ku Uik tVijaka +Ui,j—1,k—l)+Z[M—Q)Q_W](Ui,jﬂ,k +Ui,j-1,k)

©))
5 1 1 1
+2 —— YU,  a+YU, )20 + u,.
[(m)z (nAé’)ZJ( ) [(mef <Az>2] ]
1(1 & &2 2 O° 2 & 4 4
_E(?W+67J[(Aa) Zos(m) a?ju”* +0((86)" +(a2)')
. . L ouU
Again taking the approximation of the term = by
(%j _ POy, (Ui,j+1,k Ui Y +Ui,j,k—1)+(1_4¢)52rui,j,k
or Ji ik 2Ar
1 Zaauijk ZaSUijk ZaSUijk
—Z(Ar) ———@(AO) —————(Az7) —— 9
3( ") or’ #(40) oroo? #(82) aroz? ®
+0((ar)" +(a0)" +(a2)"), 0< g <1
Equation (9) implying that
l(&j 3 Py, (Ui,j+1,k +Uj kUi +Ui,j,k—1)+(l_4¢)52rui,j,k
r\ or i,j,k_ 2r,Ar
1 283Uijk 2163Uijk
— = (Ar) g (Ag) =ik 10
3ri( ) or® #(49) I oroe? (10)
21 aaui,j,k 4 4 4
—p(az) EW+O((M) +(80)" +(82)")
_ (Ar)’ . _
Now letting a:( )2 and adding (6), (7), (8) and twice of (10), we get
Az
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U 16U 10U 6%
2 >+ tS =t
o ror o6 oz ik
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12(Ar)?
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Now choose ¢ = % and consider the following terms in (11)

1({8* 1 &2 2 0° 2 0°
| — = Ar) —+(A0 u. .
12 arz r}z agZJ(( ) a 2 ( ) 892 ijk
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U, .
Again we can write the term —%(Ar)z _"3“‘
r.

in (12) as

(Ar)2 GV

4. or®

AZ 2 2 2
_ (an) a[a 10,10 2 JUi,-k

—_— —_— _+_
4r, or* ror r’o oz’

+(Ar) 0 (10U, +(Ar) 1 62UIJk 13)
4r, orlr or ar or\r? 067 4ri or az

(Ar) ot (ar)’ U, (A r) o, 1(a au,,k+(mr)2 o (U,
4r. or 4 or 4r? 6r2 2 r

: : 07 4 ar| o0
2
+(Ar) o (0%,
4r. or| oz

Using (12), (13), and multiplying both sides of (11) by lZ(Ar)2 and rearranging and simplifying further, we
get

(A )[24+52+52+52 32Arr52rin,,-k

:ao(')uu ik +a1( ) i+1,j .k +az( )Ui—l,j,k
+aa(i)(U| sk TU 1k)+a4( )(Ui,j,k+l+Uijk 1)+a5( )( 4L j+1k +UI+1j—lk) (14)
+a6(|)<ul 1, j+1.k +U| 1,j 1k)+a7( )(Ui+1jk+1+U|+1jk l)+a‘8( )( i le+l+U| 1,j.k l)
+a9(|)(U| j+lk+l+U —1k+1+U| J+1,k—1+U|] 1,k 1)
where
A Ar)
ao()——40[l+az+r j 6( r) +12 2( rz)
Za) 3( Ar w Ar Ar
=20-20—+8———| — ——-3a—
a,(i)=20-2a —2—“’—8— E[ﬁj +3{£j +322£+3a£
K AN fi i f
a3(i)=—20(+12r22—2 a4(i)=20a—2r—f’—2
. o Ar 3 wAr . o Ar 3 wAr
a5(|):1+ri—2+Ti+Eri—zTi a6(|):1+ri—2—Ti—Eri—ZTi
a7(i):1+a+ATir+gaATir ag(i):1+a—%—ga% ag(i)zowﬁ2

The system of equations in (14) is a linear sparse system, and thereby when solving we save both work and

storage compared with a general system of equations. Such savings are basically true of finite difference me-
thods: they yield sparse systems because each equation involves only few variables

To solve equation (14), consider firstinthe @ direction, nextinthe z direction and lastly inthe r direction

and thus (14) can be written in matrix form as
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(15)

AU =B

where

TM—l
and ithas M blocks and each is of order NP.
Rir Riﬂ
Rin Rir Riﬂ
Riﬂ Rir Ri/r
R = , .S, =
Ri” RI! RI”
Ri” Ri,
Til 'I'ill
TiN 'I'il TIII
'I'i” TI! Tiﬂ
T = .
R,S;, and T, areof order NP.
For the domain D,
3 (i) ay(i)
(i) a(i) a(i)
nr_ 3, (1) ay(i) a(i)
3, (i) (i)
8 (i) a,(i) a(i)
R_Hz aQ(I) a4(i) aQ(I)
3, (i) a(i)
a; (i) (i) as(i)
g/ = a (i) a (i) as(i)

RM—l SM—l
TM RM
S
S’ S/ S/
S
S’ S/ S/
S
| Ti” Ti, Ti"
Ti" Ti'
3 (i) a(i) a(i)
3 (i) (i)
3 (i) a,(i) a(i)
ag(' 4(i)
as (i) a(i) as(i)
3 (1) a(i)
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a, (i) 3, (1) a(i)
a, (i) 3 (i) a (i) a(i)
S/= a, (i) 1o 3 (i) 2 (i) a(i)
3 (i) (i) a(i)
{0 (i) a0
3 (i)
(i)
T'= 3 (i)
3 (i)
For the domain D,,
3 (1) a(i) 3, (i)
3 (i) a(i) a(i)
R- 2, (1) a (i) (i)
3 (1) (i) a(i)
3 (i) 3 (i) (i)
a,(1) (i) 3 (i)
3 (i) a,(i) a(i)
e a0 a)
3 (i) a,(i) a(i)
3 (i) 3 (1) a,(i)
a(i) a(i) 3 (1)
3 (i) a(i) as(i)
oo a (i) a(i) as(i)
3 (i) a(i) as(i)
a (i) 3 (i) al(i)
3, (1) a(i) 3 (1)
3 (1) a(i) a(i)
o a0 &) &)
3 (i) (i) a(i)
3 (i) 3 (i) (i)
S/ and T," arethe same as in the domain D,.
Here in D, , the matrices R',R/,S/,S/\T., and T are circulant matrices of order N ; and
B:[Bo B B, - BM]T’ Bi:[dil di2 di3 diP]T and dik:[dijl dijz dijp]T

such that each dy;, represents a known boundary values of U and values of f ,and

T

Uz[Ul U, Ua UM] ) Uiz(Uil Ui, Ui3 UiP)T and Uij:(Uijl Uij2 Uij3 U"P)T
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Thus, we write (15) as
RU,+SU,=B,
TU,+RU,+S,U, =B,

T,U, +RU, +S,U, =B, (16)

TwUna+RyUy =By

3. Extended Hockney’s Method
Observe that matrices R/,R" S/ and T, are real symmetric matrices and hence their eigenvalues and eigen-

vectors can easily be obtained as
For D,
jn

. :ao(i)+2a3(i)cos(ﬁ), By =a4(i)+2a9(i)cos(%) i =a1(i)+235(i)COS(N +1J

¢ :az(i)+2a5(i)cos[%j’ i=1(1)M and j=1(1)N

and for D,
A :ao(i)+2a3(i)cos(%jj, B =a4(i)+2a9(i)cos(%jj. s =ai(i)+2a5(i)cos(%jj

gij:az(i)+2a6(i)cos(%j, i~1()M and j=1()N
Let g; be an eigenvector of R/,RS/ and T corresponding to the eigenvalue 4;,5;,n; and &;; and
matrix Q=[q, 0, q, qN]T be a modal matrix of R/,R"S/ and T, Vi suchthat Q'Q =1

The N xN modal matrix Q is defined by
2 . ijm . cosé@+siné 2n . .
o=, ]——sin| —— |, i, j=1(1)N for D,; q; =| ————| Where =—={(i-1)(j-1
% =\N+1 (N+1) i=10) 1 ( JN J N (D=

i,j=1(1)N for D,
Let Q=diag(Q,Q,Q,---,Q) beamatrix of order NP;thus Q satisfy Q"Q=1 since Q'Q=1.

Since R;,S; and T, are symmetric matrices, we have

. i i i kn
QTRiQ=d|ag(/1j11ﬂjz""!/ljp)=Yi where 1, = & +25; COS(mJ

Q'S,Q=diag(&};, &, &jp ) = P, where u}p=nu+2av(i)00{pflj
(@TT.deiag(ri. T T )=‘P. where !, = ¢, +2a, (i)cos _kn_
i j1rtj2 P i P ] P+1

Let
17)

QTUi =V,=U; =QV,, QTBi =Ei:>Bi :QEi

where
\% =[Vil Vi, Vig - ViP]T’ Vikz[vilk Viok Visk ViNk]T;

E=[bi1 bm bik]T and bikz[bilk bizk biNk]T
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Pre-multiplying Equation (16) by QT and applying (17), we get
YV, +®V, =b
Y.V, + TV, + DV
YV, + YV, + D,V

U'I UI

(18)

¥V + YV, =b,
Now from each Equation of (18) we collect the first equations and put them as one group of equation
;u}kvkl +& }kvkz = 51
BV + BV + EVE =D,
DVE+ N+ EV =, (19)
TV VYT R eV =by,
r?ﬁVkM N +,u]kV'VI =b,
Now put k=1 in Equation (19) and collect the entire first set of equations, for i=1,2,3,---,M and
i=12,3,---,N toget
TVt + Vi VT =D and VO =0=V] (20a)
Again consider the second equations by putting k =2, and get
TV iV, +EV =b and V), =0=VY) (20b)
Continuing in this manner and finally considering the last equations for k = P, we obtain
TloVip + wpVip + Vi =b and v, =0=V]j (20c)

All these set of Equations (20a)-(20c) are tri- dlagonal ones and hence we solve for vJk by using Thomas al-
gorithm. With the help of (17) again we get all uj, and this solves (14) as desired. By doing this we generally
reduce the number of computations and computational time.

4. Numerical Results

In order to test the efficiency and adaptability of the proposed method, computational experiments are done on
some selected problems that may arise in practice, for which the analytical solutions of U are known to us.
The computed solutions are found for all grid points for any values of M,N and P . Here results are reported
at some randomly taken mesh points in terms of the absolute maximum error from Table 1 to 7.

Example 1. Consider V?U =0 with the boundary conditions U (0,6,z)=0, U (L6,z)=1zsing

U(r,0,z)=0=U(r,m,z),and U(r,0,0)=0,U(r,6,1)=rsino

The analytical solution is U (r, 0, z) =rzsind and the computed results of this example are shown in Table 1.
Example 2. Consider VU = —n’rcos@sinnz with the boundary conditions

U(L6,z)=cos@sinnz, U(2,6,2)=2cosfsinnz
U(r,0,z)=rsinnz U (r,%,zjzo, and U (r,0,0)=0=U(r,0,1)

The analytical solution is U (r,e,z) =rcos@sinmz and the computed results of this example are shown in
Table 2.
Example 3. Consider V?U =-3cos@ with the boundary conditions

u(0,6,z)=U(16,2)=-2z, U(r,0,z)=r(1-r)-2z, U(r,g,z):—ZZ
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Table 1. Maximum absolute error of example 1.

(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(99,9 3.51670e-005 (29,9,39) 1.37257-006
(9,9,29) 1.46565e-005 (29,19,9) 4.15180e-006
(9,19,9) 3.53325e-005 (29,29,19) 2.45633e-006
(9,19,19) 2.06578e-005 (29,29,29) 1.74383e-006
(9,29,39) 1.132806-005 (29,39,19) 2.459246-006
(9,39,29) 1.464386-005 (29,39,29) 1.74829¢-006
(19,9,9) 9.21838e-006 (39,9,19) 1.35171e-006
(19,9,19) 5.32850e-006 (39,9,39) 7.75143e-007
(19,19,19) 5.46733e-006 (39,19,29) 9.82456e-007
(19,29,39) 3.02425e-006 (39,29,19) 1.38647e-006
(19,39,9) 9.27536e-006 (39,39,9) 2.34568e-006
(19,39,39) 3.02636e-006 (39,39,39) 7.68613e-007

Table 2. Maximum absolute error of example 2.

(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9,9) 2.93159e-003 (29,9,39) 2.98714e-003
(9,9,29) 2.95649¢-003 (29,19,9) 7.39877e-004
(9,19,9) 7.32025¢-004 (29,29,19) 3.31950e-004
(9,19,19) 7.38648¢-004 (29,29,29) 3.31771e-004
(9,29,39) 3.27574e-004 (29,39,19) 1.86718e-004
(9,39,29) 1.83450e-004 (29,39,29) 1.86618¢-004
(19,9,9) 2.95328e-003 (39,9,19) 2.98618e-003
(19,9,19) 2.97861e-003 (39,9,39) 2.98710e-003
(19,19,19) 7.44907€-004 (39,19,29) 7.46353¢-004
(19,29,39) 3.31145e-004 (39,29,19) 3.31953e-004
(19,39,9) 1.84585e-004 (39,39,9) 1.84916e-004
(19,39,39) 1.86232¢-004 (39,39,39) 1.86784e-004

U(r,6,0)=r(1-r)cosd, U(r,0,1)=r(1-r)cosd—-2

The analytical solution is U (r,6, z) =r(1- r)cose— 2z and the computed results of this example are shown
in Table 3.

Example 4. Consider V°U :—nz(rz—izjsin(ze)sin(nz) with the boundary conditions
r
U(1.0,2)=0, U (2,0,2)="sin(20)sin(x2), U(r,O,z):O:U(r,g,zj and U (r,0,0)=0=U (r,0,1)

The analytical solution is U (r,e,z):(r2 —rizjsin(w)sin(nz) and the computed results of this example

are shown in Table 4.
Example 5 Consider V?U =(8rz (1- z)—2r3)(sin9+cos 6), where 0<6 <2n with the boundary conditions

U(0,6,2)=0, U(1,6,z)=z(1-z)(sin@+cosd) U(r,0,0)=0=U(r,6,1)

The analytical solution is U (r,8,z)=r’z(1-z)(sin@+cos@) and the computed results of this example are
shown in Table 5.
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Table 3. Maximum absolute error of example 3.

(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9,9) 1.81124e-004 (29,9,39) 1.16544e-005
(9,9,29) 4.45263e-005 (29,19,9) 1.82484e-004
(9,19,9) 1.81185e-004 (29,29,19) 4.61297e-005
(9,19,19) 6.02480e-005 (29,29,29) 2.04978e-005
(9,29,39) 3.97430e-005 (29,39,19) 4.61300e-005
(9,39,29) 4.46327e-005 (29,39,29) 2.04979e-005
(19,9,9) 1.81939¢-004 (39,9,19) 4.618286-005
(19,9,19) 4.594266-005 (39,9,39) 1.17058e-005
(19,19,19) 4.59583¢-005 (39,19,29) 2.05467€-005
(19,29,39) 1.50833¢-005 (39,29,19) 4.61879e-005
(19,39,9) 1.82013e-004 (39,39,9) 1.82652¢-004
(19,39,39) 1.50852e-005 (39,39,39) 1.15493e-005
Table 4. Maximum absolute error of example 4.
(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9.9) 3.68396e-003 (29,9,39) 3.98135¢-003
(9,9,29) 4.07400e-003 (29,19,9) 6.33780e-004
(9,19,9) 7.68229¢-004 (29,29,19) 3.64070e-004
(9,19,19) 1.04366e-003 (29,29,29) 4.173686-004
(9,29,39) 5.73867e-004 (29,39,19) 1.75928¢-004
(9,39,29) 3.62888e-004 (29,39,29) 2.24720e-004
(19,9,9) 3.58663e-003 (39,9,19) 3.89251e-003
(19,9,19) 3.92179¢-003 (39,9,39) 3.97355€-003
(19,19,19) 9.34774e-004 (39,19,29) 9.60868e-004
(19,29,39) 4.61633e-004 (39,29,19) 3.55183e-004
(19,39,9) 7.29565e-004 (39,39,9) 7.23913e-004
(19,39,39) 2.68695e-004 (39,39,39) 2.34933e-004
Table 5. Maximum absolute error of example 5.
(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9.9) 5.97062e-004 (29,9,39) 1.65910e-004
(9,9,29) 4.42157¢-004 (29,19,9) 4.110936-004
(9,19,9) 5.09956e-004 (29,29,19) 1.01380e-004
(9,19,19) 3.72361e-004 (29,29,29) 6.92680e-005
(9,29,39) 3.26827e-004 (29,39,19) 1.03392¢-004
(9,39,29) 3.27891e-004 (29,39,29) 6.38312¢-005
(19,9,9) 3.72181e-004 (39,9,19) 1.80739¢-004
(19,9,19) 2.39220e-004 (39,9,39) 1.49613e-004
(19,19,19) 1.52973e-004 (39,19,29) 6.95506e-005
(19,29,39) 1.04227e-004 (39,29,19) 1.06985e-004
(19,39,9) 3.96923e-004 (39,39,9) 4.28673e-004
(19,39,39) 9.84850e-005 (39,39,39) 3.91182e-005
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This example was considered by M.C. Lai [1] as a test problem and our results are better than their results in
terms of accuracy. For instance, for (8,16,16) the maximum absolute error in their result is 9.1438e-004 and while
ours is 3.28689e-004.

Example 6 Consider V?U =6rzcosd , where 0< 6 <2rn with the boundary conditions

U(0,0,2)=0, U(L6,z)=zcos’d; U(r,0,0)=0 and U (r,0,1)=r’cos’0
The analytical solution is U (r, 0, z) =r®zcos® @ and the computed results are shown in Table 6.

Example 5.7 Consider VU =—7t2(r2 —izjsin(ze)sin(nz) where 0< @ <2 with the boundary condi-
r

tions

U(L6,2)=0, u(z,e,z):%in(ze)sin(nz); U(r,0,0)=0=U(r.0,1)

The analytical solution is U (r,6’,z):(r2 —rizjsin(Ze)sin(nz) and the computed results of this example

are shown in Table 7.

Table 6. Maximum absolute error of example 6.

(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9,9) 3.04648¢-003 (29,9,39) 3.06543e-004
(9,9,29) 3.18297e-003 (29,19,9) 2.00777€-004
(9,19,9) 3.05549¢-003 (29,29,19) 2.85659e-004
(9,19,19) 3.16606e-003 (29,29,29) 3.02059e-004
(9,29,39) 3.19893e-003 (29,39,19) 2.85718e-004
(9,39,29) 3.19459¢e-003 (29,39,29) 3.02122e-004
(19,9,9) 6.03143e-004 (39,9,19) 1.42033e-004
(19,9,19) 6.87721e-004 (39,9,39) 1.62951e-004
(19,19,19) 6.89766e-004 (39,19,29) 1.58004e-004
(19,29,39) 7.13568e-004 (39,29,19) 1.42553e-004
(19,39,9) 6.05428¢-004 (39,39,9) 1.585966-004
(19,39,39) 7.13712¢-004 (39,39,39) 1.63583¢-004

Table 7. Maximum absolute error of example 7.

(N,P,M) Max. absolute error (N,P,M) Max. absolute error
(9,9,9) 3.00418e-003 (29,9,39) 4.13706e-003
(9.9,29) 2.36262e-003 (29,19,9) 8.41886e-004
(9,19,9) 4.54924¢-003 (29,29,19) 5.786466-004
(9,19,19) 4.13088e-003 (29,29,29) 6.30456e-004
(9,29,39) 4.49099e-003 (29,39,19) 3.91287e-004
(9,39,29) 4.67590e-003 (29,39,29) 4.41870e-004
(19,9,9) 3.54731e-003 (39,9,19) 4.01710e-003
(19,9,19) 3.84938e-003 (39,9,39) 4.09806e-003
(19,19,19) 1.08325e-003 (39,19,29) 1.10354e-003
(19,29,39) 6.43373e-004 (39,29,19) 5.01257e-004
(19,39,9) 9.83307e-004 (39,39,9) 7.61254e-004
(19,39,39) 4.66590e-004 (39,39,39) 3.82100e-004
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5. Conclusions

In this work, we have transformed the three dimensional Poisson’s equation in cylindrical coordinates system into
a system of algebraic linear equations using its equivalent fourth-order finite difference approximation scheme.
The resulting large number of algebraic equation is, then, systematically arranged in order to get a block matrix.
By extending Hockney’s method to three dimensions, we reduced the obtained matrix into a block tridiagonal
matrix, and each block is solved by the help of Thomas algorithm. We have successfully implemented this method
to find the solution of the three dimensional Poisson’s equation in cylindrical coordinates system and it is found
that the method can easily be applied and adapted to find a solution of some related applied problems. The method
produced accurate results considering double precision. This method is direct and allows considerable savings in
computer storage as well as execution speed.
Therefore, the method is suitable to apply to some three dimensional Poisson’s equations.
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