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1 INTRODUCTION
According to [1], the exponential distribution
is perhaps the most widely applied statistical
distribution for problems in reliability. For
many years, researchers have been developing
various extensions and modified forms of
the exponential distribution. Recently, [2]
introduced an extension of the exponential
distribution called the transmuted exponentiated
exponential distribution. [3] introduced and
studied the gamma-exponentiated exponential
distribution. [4] studied the exponentiated
exponential distribution and discussed its various
properties. [5] proposed the beta generalized
exponential distribution and discussed its various
properties. [6] introduced and studied a three-
parameter distribution, so-called the generalized
exponential distribution.

In this paper, we introduce and study several
structural properties of a new distribution,
referred to as a exponentiated Kumaraswamy-
exponential distribution. The properties of the
new model are discussed and expressions are
derived for the moments, mean deviations,
Bonferroni and Lorentz curves. Estimation of the
model parameters by the method of maximum
likelihood is discussed. The flexibility of this
distribution is illustrated in an application to a
real data set.

The paper is organized as follows. Section 2
defined the exponentiated Kumaraswamy-
exponential distribution and some special sub-
models are discussed. Various structural
properties which includes moments, mean
deviations and Rényi entropy are explored
in Section 3. The estimation of the model
parameters using the method of maximum
likelihood is discussed in Section 4. Finally, in
Section 5 an application on a real data set is
reported.

The calculations of this paper involve the gamma
function defined by

Γ(α) =

∞∫
0

tα−1 e−tdt, (1.1)

the lower incomplete gamma function

γ(α, x) =

x∫
0

tα−1 e−tdt (1.2)

and the upper incomplete gamma function
defined by

Γ(α, x) =

∞∫
x

tα−1 e−tdt. (1.3)

2 THE EXPONENTIATED
KUMARASWAMY-EXPONEN-
TIAL DISTRIBUTION

The cumulative distribution function (CDF)
and probability density function (PDF) of the
exponential distribution are given by

G (x;α) = 1− exp (−αx) (2.1)

and
g (x;α) = α exp (−αx) , (2.2)

respectively, where x > 0 and α > 0 is the scale
parameter.

[7] introduced a two-parameter distribution,
known as Kumaraswamy distribution. Its CDF is
given by

F (x;β, λ) = 1−
(
1− xβ

)λ
(2.3)

where 0 < x < 1, β > 0 and λ > 0. The
corresponding PDF for (2.3) is given by

f (x;β, λ) = βλxβ−1
(
1− xβ

)λ−1

. (2.4)

The Kumaraswamy distribution has been
identified as a viable alternative to beta
distribution because they both have the same
basic shape properties (unimodal, uniantimodal,
increasing, decreaing, monotone or constant).
However, the PDF given in Equation 2.4 does not
involve any incomplete beta function ratio and it
is regarded as being tractable because of its mild
algebraic properties. Recently, [8] proposed a
generalization of the Kumaraswamy distribution,
so-called the exponentiated Kumaraswamy
distribution. The CDF and PDF of the
exponentiated Kumaraswamy distribution are
given by
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F (x;β, λ, θ) =

[
1−

(
1− xβ

)λ]θ
(2.5)

and

f (x;β, λ, θ) = βλθxβ−1
(
1− xβ

)λ−1
[
1−

(
1− xβ

)λ]θ−1

, (2.6)

respectively, where 0 < x < 1, β > 0, λ > 0 and θ > 0 are shape parameters. Let G(x) be the CDF
of any random variable X. The CDF of a generalized class of distributions is given by

F (x;β, λ, θ) =

[
1−

(
1−G(x)β

)λ]θ
. (2.7)

where β, λ and θ are additional shape parameters.

[9] have used the CDF of Dagum distribution in (2.7) to propose the exponentiated Kumaraswamy-
Dagum distribution. The generalization (2.7) can be used to propose other distributions based on the
exponentiated Kumaraswamy distribution.

Combining (2.1) and (2.7), gives the CDF of the exponentiated Kumaraswamy-exponential (ExpK-E)
distribution as:

F (x;α, β, λ, θ) =

{
1−

[
1− (1− exp (−αx))β

]λ}θ

. (2.8)

Differentiating (2.8) with respect to x, and doing the necessary simplifications, gives the PDF as:

f (x;α, β, λ, θ)=αβλθ(1− exp (−αx))β−1
[
1− (1− exp (−αx))β

]λ−1

exp (−αx)

×
{
1−

[
1− (1− exp (−αx))β

]λ}θ−1

. (2.9)

where x > 0, α, β, λ and θ. α is the scale parameter. β, λ and θ are additional shape parameters.

Figure 1 illustrates some of the possible shapes of the PDF of the ExpK-E distribution for different
values of the parameters α, β, λ and θ.

2.1 Sub-models
Sub-models of ExpK-E distribution for selected values of the parameters are presented in this subsection.

1. When β = λ = θ = 1, the ExpK-E distribution is the exponential distribution with the PDF,

f (x;α) = α exp (−αx) . (2.10)

2. If λ = θ = 1, the ExpK-E distribution is the exponentiated exponential (Exp-E) distribution. The
PDF is given by

f (x;α, β) = αβ (1− exp (−αx))β−1 exp (−αx) . (2.11)

3. If λ = β = 1, we have the exponentiated exponential distribution with the PDF,

f (x;α, θ) = αθ (1− exp (−αx))θ−1 exp (−αx) . (2.12)

4. If λ = 1, we have another exponentiated exponential distribution with parameters α, βθ and
PDF is given by

f (x;α, βθ) = αβθ (1− exp (−αx))βθ−1 exp (−αx) . (2.13)
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Figure 1: The PDF of the ExpK-E distribution for different values of the parameters

5. When θ = 1, the ExpK-E distribution is the Kumaraswamy exponential distribution introduced
by [10] with the FDP given by

f (x;α, β, λ) = αβλ (1− exp (−αx))β−1
[
1− (1− exp (−αx))β

]λ−1

exp (−αx) . (2.14)

6. If β = 1, we have the exponentiated exponential distribution with parameters αλ and θ. The
corresponding PDF is

f (x;αλ, θ) = αλθ (1− exp (−αλx))θ−1 exp (−αλx) . (2.15)

3 PROPERTIES

3.1 Expansions for the Cumulative and Density Functions

For any real non-integer θ > 0, we have the power series

(1− ω)θ−1 =

∞∑
j=0

(−1)jΓ(θ)ωj

Γ(θ − j)j!
(3.1)

where |ω| < 1. Using the power series (3.1) in Equation 2.8, we can write

F(x;α, β, λ, θ) = βλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+ljkΓ(θ)Γ(λj)Γ(βk) exp (−αlx)

Γ(θ − j + 1)Γ(λj − k + 1)Γ(βk − l + 1)j!k!l!
(3.2)

for β, λ and θ real non-integers. For β integer, the index l in the previous sums stops at βk. If λ > 0
is an integer, the index k stops at λj. If θ > 0 is an integer, the index j stops at θ.
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Now, using again the power series (3.1), we can express (2.9) (for β, λ and θ real non-integers)
as

f(x;α, β, λ, θ) =

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lαβλθΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] exp [−α(l + 1)x]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] j!k!l!
. (3.3)

The Equation 3.3 reveals that the ExpK-E density function is a linear combination of exponential
density functions.

3.2 Hazard Function
For a continuous distribution with PDF f(x) and CDF F (x), the hazard function is defined as

h (x) = lim
∆x→0

P (X < x+∆x|X > x)

∆x
=

f(x)

1− F (x)
. (3.4)

The hazard function is an important quantity characterizing life phenomena. For the ExpK-E distribution,
the hazard rate function is

h (x;α, β, λ, θ)=
αβλθ(1− exp (−αx))β−1

[
1− (1− exp (−αx))β

]λ−1

exp (−αx)

1−
{
1−

[
1− (1− exp (−αx))β

]λ}θ

×
{
1−

[
1− (1− exp (−αx))β

]λ}θ−1

. (3.5)

Figure 2 illustrates the behavior of the hazard function of a ExpK-E distribution for selected values of
the parameters α, β, λ and θ.

Figure 2: The hazard function of the ExpK-E distribution for different values of the
parameters
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3.3 Moments
In this subsection we discuss the rth moment for ExpK-E distribution. Moments are necessary and
important in any statistical analysis, especially in applications. It can be used to study the most
important features and characteristics of a distribution (e.g., tendency, dispersion, skewness and
kurtosis). Therefore, it is customary to derive the moments when a new distribution is proposed.

Using the form in (3.3), we can write

E (Xr) =

∫ ∞

0

xrf (x;α, β, λ, θ) dx

= αβλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] j!k!l!

×
∫ ∞

0

xrexp [−α(l + 1)x] dx. (3.6)

Making the transformation t = α (l + 1) and using the definition of the gamma function (1.1), the rth

moment of ExpK-E distribution is given by

E (Xr) = αβλθ
∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] r!

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]r+1 j!k!l!
. (3.7)

In particular, the mean for the ExpK-E distribution is given by

E (X) = µ = αβλθ
∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]2 j!k!l!
. (3.8)

The moment generating function of the ExpK-E distribution is given by

M (t)=αβλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)− t] j!k!l!
(3.9)

for t < α(l + 1). The corresponding characteristic function is

ϕ (t) = αβλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)− it] j!k!l!
(3.10)

where i =
√
−1.

3.4 Quantiles of the Distribution
The pth quantile, qp, of the ExpK-E distribution is the real solution of the equation

F(qp) = p (3.11)

and is given by:

qp = − log

(
1−

[
1−

(
1− p1/θ

)1/λ]1/β)1/α

. (3.12)

In particular the ExpK-E median is:

q0.5 = − log

1−

1−(1− (1

2

)1/θ
)1/λ

1/β


1/α

. (3.13)
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Using the method of inversion in [11], random
numbers from the ExpK-E distribution can be
generated with U ∼ U(0, 1) as the solution of
following equation

u =

{
1−

[
1− (1− exp (−αq))β

]λ}θ

. (3.14)

This yield

q = − log

(
1−

[
1−

(
1− u1/θ

)1/λ]1/β)1/α

.

(3.15)
Moreover, (3.15) may be used to generate
random numbers from the ExpK-E distribution

using different initial values for the parameters.

3.5 Mean Deviations
The amount of spread in a population is evidently
measured to some extent by the totality of
deviations from the mean and median. These are
known as the mean deviation about the mean and
the mean deviation about the median. Let X be
a ExpK-E random variable with mean µ = E (X)
and median m.

The mean deviation from the mean can be
defined as

δ1 (X) = E (|X − µ|)

=

∫ ∞

0

|x− µ|f (x;α, β, λ, θ) dx

= 2µF (µ;α, β, λ, θ)− 2µ+ 2

∫ ∞

µ

xf (x;α, β, λ, θ) dx

= 2µ

{
1−

[
1− (1− exp (−αµ))β

]λ}θ

− 2µ

+ 2αβλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] Γ [2, αµ(l + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]2 j!k!l!
. (3.16)

The mean deviation from the median is, also, defined by

δ1 (X)=E (|X −m|)

=

∫ ∞

0

|x−m|f (x;α, β, λ, θ) dx

= −µ+ 2

∫ ∞

m

xf (x;α, β, λ, θ) dx

= −µ+ 2αβλθ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] Γ [2, αm(l + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]2 j!k!l!
.(3.17)

3.6 Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves have applications not only in economics to study income and
poverty, but also in other fields like reliability, demography, insurance and medicine. The Bonferroni
and Lorenz curves are defined by

B (p) =
1

pµ

∫ q

0

xf (x) dx (3.18)

and

L (p) =
1

µ

∫ q

0

xf (x) dx, (3.19)
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respectively, where µ = E (X) and q = F−1 (p). In the case of EexpK-E distribution, using the results
of above paragraphs, we obtain

B (p) =
αβλθ

pµ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] γ [2, αq (l + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]2 j!k!l!

(3.20)

and

L (p) =
αβλθ

µ

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ(θ)Γ [λ(j + 1)] Γ [β(k + 1)] γ [2, αq (l + 1)]

Γ(θ − j)Γ [λ(j + 1)− k] Γ [β(k + 1)− l] [α (l + 1)]2 j!k!l!
.

(3.21)

3.7 Entropy
An entropy of a random variable X is a measure of variation of the uncertainty. It is an important
concept in many fields of science, especially theory of communication, physics and probability. A
popular entropy measure is Rényi entropy. If X has the PDF f(·) then Rényi entropy is defined by

HR (ν) =
1

1− ν
log

[∫
fν (x) dx

]
(3.22)

where ν > 0 and ν ̸= 1. Using (3.22), Rényi entropy of ExpK-E distribution is given by

HR (ν) =
ν

1− ν
(logα+ log β + log λ+ log θ)

+
1

1− ν
log

∞∑
j=0

∞∑
k=0

∞∑
l=0

(−1)j+k+lΓ [ν (θ − 1) + 1] Γ [λj + ν (λ− 1) + 1]

[α (l + ν)] Γ [ν (θ − 1) + 1− j] Γ [jλ+ ν (λ− 1) + 1− k] j!k!l!

× Γ [kβ + ν (β − 1) + 1]

Γ [kβ + ν (β − 1) + 1− l]
. (3.23)

3.8 Order Statistics
Order statistics are among the most fundamental tools in non-parametric statistics and inference.
They enter in the problems of estimation and hypothesis tests in a variety of ways. Therefore, we now
discuss some properties of the order statistics for the ExpK-E distribution. Suppose X1, X2, . . . , Xn

is a random sample from ExpK-E distribution. Let X1:n < X2:n < . . . < Xn:n denote the corresponding
order statistics. From [12], the PDF and CDF of the rth order statistic, say Y = Xr:n, are given by

fY (y) =
n!

(r − 1)!(n− r)!
F r−1(y) [1− F (y)]n−r f(y)

=
n!

(r − 1)!(n− r)!

n−r∑
l=0

(
n− r

l

)
(−1)l F l+r−1(y)f(y) (3.24)

and

FY (y) =

n∑
j=r

(
n
j

)
F j(y) [1− F (y)]n−j

=

n∑
j=r

n−j∑
l=0

(
n
j

)(
n− j

l

)
(−1)l F j+l(y) (3.25)

8
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where f(·) and F (·) are the PDF and CDF of the ExpK-E distribution, respectively. It follows from
Equations (2.8) and (2.9) that

fY (y) =
αβλθ exp (−αy)n!

(r − 1)!(n− r)!
(1− exp (−αy))β−1

[
1− (1− exp (−αy))β

]λ−1

×
n−r∑
l=0

(
n− r

l

)
(−1)l

{
1−

[
1− (1− exp (−αy))β

]λ}θ(l+r)−1

(3.26)

and

FY (y)=
n∑

j=r

n−j∑
l=0

(
n
j

)(
n− j

l

)
(−1)l

{
1−

[
1− (1− exp (−αy))β

]λ}θ(j+1)

. (3.27)

4 Maximum Likelihood Estimation
Suppose x1, . . . , xn is a random sample of size n from the ExpK-E distribution given by (2.9). The
log-likelihood function for the vector of parameters Θ = (α, β, λ, θ)T can be written as:

logL (Θ) = (β − 1)
n∑

i=1

log (1− exp (−αxi)) + n logα+ n log β + n log λ

+ (λ− 1)

n∑
i=1

log
[
1− (1− exp (−αxi))

β
]
+ n log θ − α

n∑
i=1

xi

+ (θ − 1)
n∑

i=1

log

[
1−

(
1− (1− exp (−αxi))

β
)λ]

. (4.1)

Differentiating the log-likelihood with respect α, β, λ and θ, respectively, and setting the result equal
to zero, we have

∂ logL

∂α
=

n

α
+

n∑
i=1

α(β − 1)

exp (αxi)− 1
+

n∑
i=1

αβ(1− λ)(1− exp (−αxi))
β−1[

1− (1− exp (−αxi))
β
]
exp (αxi)

−
n∑

i=1

xi

+

n∑
i=1

αβλ(θ − 1)(1− exp (−αxi))
β−1
[
1−(1−exp (−αxi))

β
]λ−1[

1−
(
1−(1−exp (−αxi))

β
)λ]

exp (αxi)

= 0, (4.2)

∂ logL

∂β
=

n

β
+ (1− λ)

n∑
i=1

(1− exp (−αxi))
β log (1− exp (−αxi))

1− (1− exp (−αxi))
β

+
n∑

i=1

log (1− exp (−αxi))

+ λ(θ − 1)

n∑
i=1

[
1− (1− exp (−αxi))

β
]λ−1

(1− exp (−αxi))
β

1−
[
1− (1− exp (−αxi))

β
]λ

× log (1− exp (−αxi)) = 0, (4.3)

∂ logL

∂λ
=

n

λ
+

n∑
i=1

log
[
1− (1− exp (−αxi))

β
]
+ (θ − 1)

n∑
i=1

[
1− (1− exp (−αxi))

β
]λ

1−
[
1− (1− exp (−αxi))

β
]λ

× log
(
1− (1− exp (−αxi))

β
)
= 0, (4.4)

9
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∂ logL

∂θ
=

n

θ
+

n∑
i=1

log

[
1−

(
1− (1− exp (−αxi))

β
)λ]

= 0. (4.5)

The maximum likelihood estimator (MLE) Θ̂ is obtained by solving Equations 4.2−4.5. To solve
(4.2) through (4.5), it is usually more convenient to use nonlinear optimization algorithms such as
quasi−Newton algorithm to numerically maximize the log-likelihood function. In order to compute the
standard errors and asymptotic confidence intervals the usual large sample approximation is used, in
which the maximum likelihood estimators can be treated as being approximately multivariate normal.
Hence as n → ∞, the asymptotic distribution of the MLE is given by,


α̂

β̂

λ̂

θ̂

 = N




α
β
λ
θ

 ,


V̂11 V̂12 V̂13 V̂14

V̂21 V̂22 V̂23 V̂24

V̂31 V̂32 V̂33 V̂34

V̂41 V̂42 V̂43 V̂44


 (4.6)

where V̂ij = Vij |Θ=Θ̂ and


V̂11 V̂12 V̂13 V̂14

V̂21 V̂22 V̂23 V̂24

V̂31 V̂32 V̂33 V̂34

V̂41 V̂42 V̂43 V̂44

 =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


−1

(4.7)

is the approximate variance covariance matrix with elements obtained from

A11 = −∂2 logL

∂α2
, A12 = −∂2 logL

∂α∂β
, A13 = −∂2 logL

∂α∂λ
, A14 = −∂2 logL

∂α∂θ
,

A22 = −∂2 logL

∂β2
, A23 = −∂2 logL

∂β∂λ
, A24 = −∂2 logL

∂β∂θ
,

A33 = −∂2 logL

∂λ2
, A34 = −∂2 logL

∂λ∂θ
,

A44 = −∂2 logL

∂θ2
. (4.8)

Approximate 100(1 − γ)% confidence intervals two sided confidence intervals for α, β, λ and θ are,
respectively, given by

α̂± zγ/2

√
V̂11, β̂ ± zγ/2

√
V̂22, λ̂± zγ/2

√
V̂33, θ̂ ± zγ/2

√
V̂44 (4.9)

where zγ is the upper γth percentile of the standard normal distribution.
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5 Application

In this section we will study one real data
set to illustrate the usefulness of the ExpK-E
distribution for modeling reliability data. We
will make comparison of the results with the
exponential (Exp), inverse exponential (IExp) and
Weibull distributions.

We consider the widely used data from [13]. The
data represent the survival times of guinea pigs
injected with different doses of tubercle bacilli.

The maximum likelihood estimates, the
corresponding values of log-likelihood and the
Akaike Information Criterion (AIC) values for
the fitted distributions are reported in Table 1.
The results show that the ExpK-E distribution
provides a significantly better fit than the other
models.

Plots of the estimated PDF of the exponential,
ExpK-E, IE and Weibull models fitted to these
data set are given in Figure 3. The figure indicate
that the ExpK-E distribution is superior to the
other distributions in terms of model fitting.

Figure 3: Histogram and estimated densities.

Table 1. The maximum likelihood estimates and AIC of the models

Model Maximum likelihood estimates log-likelihood AIC

Exp α = 0.001, β = 1, λ = 1, θ = 1 −493.887 989.775
ExpK-E α = 0.015, β = 2.010, λ = 1.001, θ = 1.010 −393.639 795.279
IExp α = 60.098 −402.502 807.003
Weibull α = 0.009, β = 1.392 −397.148 798.300
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6 CONCLUSION
We proposed a new distribution, named
the exponentiated Kumaraswamy-exponential
distribution which extends the exponential
distribution. Several properties of the new
distribution were investigated. The estimation of
parameters by the method of moments and the
maximum likelihood have been discussed. An
application of the exponentiated Kumaraswamy-
exponential distribution to real data show that the
new distribution can be used quite effectively to
provide better fits than the exponential, inverse
exponential and Weibull distributions.
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