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ABSTRACT 
 
DNA sequences are long strands of four letters – A,T.C and G,  that represent the amino-acid 
building components of proteins . A triplet sequence of adjacent letters on a DNA sequence is 
known as a codon. Multiple codons represent one of the 20 possible amino acids. DNA sequence 
matching is used to determine the similarity between an unidentified DNA sequence with the 
database of other sequences with known characteristics. Those sequences displaying high levels of 
similarity tend to be similar in nature and thus the matching can be a useful tool in determining the 
nature of the new genetic sample. This paper presents the conceptual architecture of a content 
addressable memory that can be used to provide simultaneous comparison of a query DNA 
sequence with 16 stored sequences, and identifies the ones with the highest number of codon 
matches with the query sequence. 
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1. INTRODUCTION  
 
The DNA (Deoxyribonucleic acid) is composed of 
four constituent bases: adenine (A), thymine (T), 

cytosine (C), and guanine (G).  When expressed 
as a part of a genetic sequence, the bases are 
grouped into triplets called codons; each codon 
produces a particular amino acid [1].  
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Since there are 4 characters in the DNA 
alphabet, the triplet could encode 64 distinct 
values.  However, there are only 20 amino acids. 
As a result, multiple codons can be used to code 
the same amino acid. Arginine, for example, is 
coded for by CGT, CGC, CGA, CGG, AGA, and 
AGG while Tryptophan is coded only by TGG.   
 
Additionally, some codons, called start and stop 
codons, do not produce any amino acid at all and 
instead they are used to regulate the reading 
frame of a protein sequence.  The fact that 
multiple codons can represent the same amino 
acid means that, in spite of mutations, similar 
DNA sequences represent proteins of similar 
function. This means that by comparing unknown 
DNA sequences to similar known sequences it is 
possible to determine the structure and function 
of their corresponding proteins. These 
projections of form and function, as well as the 
study of molecular evolution, are possible only by 
using tools of molecular sequence alignment. 
 

2. DNA SEQUENCE MATCHING  
 

DNA sequence matching is used for 
identification, analysis, and evolutionary 
placement of an unknown sequence [2].Typical 
applications involve the comparison of a single 
unknown DNA sequence against extremely large 
and growing databases of the known sequences. 
It is a computationally intensive task [3]. Existing 
algorithms for sequence matching are largely 
software-based with specially designed hardware 
implementations capturing the high-end market 
[4-6]. Improvements in the performance are 
typically provided by heuristic approaches. 
Heuristics are useful because they allow the 
databases to be quickly searched for potential 
matches. In doing so, a fair number of potential 
matches are overlooked and accuracy is thereby 
sacrificed. 
 

Distributed computing speeds up the 
computation process by dividing the workload. It 
may take the form of specialized parallel 
hardware implementations or, in the realm of 
software, clusters of computers working jointly 
[7]. Though there are definite improvements in 
search speed, the same sequential comparison 
algorithms with their associated deficiencies are 
utilized in each distributed instance. 
 

In an effort to offer an alternative, the use of a 
dedicated CAM (Content Addressable Memory) 
architecture is proposed in this paper; this allows 
simultaneous comparison of a single query 

sequence with a number of stored DNA 
sequences. The use of CAM for faster sequence 
matching was first proposed in Ref. [8,9]; these 
papers, however, did not present a specific CAM 
architecture for this purpose. 
     

Sequence alignment is the process by which two 
or more sequences are arranged alongside one 
another to maximize the similarity observed in a 
pair-wise comparison of their members.  Gaps 
(‘—‘) are often used to pad sequences in order to 
achieve a better match, and typically represent 
insertion or deletion type mutations. 

 

 
 

Fig. 1. Improving alignment with null 
characters 

 

While the first alignment (on the left) shown 
above in Fig. 1 is perfectly valid, the second 
represents an optimal alignment of the two 
sequences.  An alignment is said to be optimal if 
it features the maximum number of matching 
positions.  Finding an optimal alignment is not a 
computationally trivial task as the number of 
potential placement combinations is enormous. 
Algorithms to find these optimal alignments must 
maximize the number of matching bases while 
minimizing null character utilization.   
 

The Smith-Waterman algorithm [10] is a popular 
choice for finding the alignment between two 
sequences. The algorithm, however, requires the 
construction of a matrix where memory and time 
requirements are quite large and increase with 
the sizes of the sequences being compared.  
When comparisons are needed with more than 
one sequence, such as when searching through 
a large database to find and score near matches, 
faster implementations are required. 
 

Progress has been made in both the realm of 
hardware- and software-based sequence 
alignment techniques; these can be divided into 
two categories. The first is the reduction of the 
search set [11]. Software solutions, such as 
BLAST [12] and FASTA [13] work by using 
heuristics to eliminate, in part or whole, some of 
the database entries and then execute the Smith-
Waterman algorithm on the remainder. By 
eliminating sequences that appear to be unlikely 
matches, comparison time can be reduced 
dramatically. The time savings comes at a cost of 
accuracy as some potentially good alignments 

A T C G T A C G  - T 
|     |   |  | | | |    | 
A  - C G T A C G C T 
 

ATCGTACGT  
 |                 | 
ACGTACGCT 



 
 
 
 

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154 
 
 

 
3 
 

can be discarded. The second group attempts to 
exploit of parallelism to speed up the search 
process. For example, the Smith-Waterman 
algorithm’s distance matrix lends itself to cellular 
organization and a degree of pipelining. 
Additionally, by breaking the database of 
sequences to be searched into smaller pieces, 
comparisons, in either hardware or software, can 
be distributed and executed concurrently. 
 

The fastest way to enhance the alignment speed 
is through parallel computation, for example, by 
distributing n sequences across n machines with 
each machine running a comparison between the 
two sequences. By changing the nature of the 
comparison, this is possible in a single machine 
by using a content addressable memory. 
 

3. CONTENT ADDRESSABLE MEMORY 
 

Random access memory (RAM) works by 
accepting an address and then returning the 
value stored at the memory module referenced 
by that address. Content-addressable memory 
(CAM)], in contrast, works in the opposite fashion 
[14]. A query value is supplied to the CAM and 
the addresses of the modules that contain 
matching stored values are returned. The ability 
to simultaneously compare a single query value 
with multiple stored values makes CAMs very 
useful as a basis for hardware-based searching.  
Of the commonly available CAM 
implementations, the binary CAM is the most 
straightforward.  Sequence composition is limited 
to 1s and 0s and a match is returned only if the 
query and stored values are identical as 
determined by a bitwise comparison. 

This paper presents a dedicated binary-CAM 
architecture for comparing DNA sequences; it is 
designed to report matches on similar rather than 
identical sequences.  It features a three-level 
hierarchal organization that allows varying match 
criteria to be used across the three different 
levels of abstraction: the base, the codon, and 
the DNA sequence.  The lowest level of the 
hierarchy is a grouping of three bits into a group 
representing a single molecular base (A,C,G or 
T). Three of these bases are grouped to form a 
codon, and sixteen codons are joined into a DNA 
sequence; a sequence of 16 bases is chosen 
arbitrarily in this paper to simplify the 
presentation of the main concept of the design.  
Thus the CAM module presented in this paper is 
composed of 16 words, each composed of 124 
bits as shown in Fig. 2. The objective is to 
simultaneously compare the query sequence 
with 16 sequences each stored in a 124-bit word, 
and to identify among these the ones with the 
highest number of matches. 
 
The basic component, and base of the CAM 
hierarchy, is the 3-bit block shown in Fig.3. 
These blocks are capable of storing values 
representing any of four DNA bases or one of 
two conditions: don’t care or off.  A don’t care 
serves as a wildcard and will signal a match with 
any base.  Off simulates a ‘—‘in the sequence 
that indicates the base is not intended for 
comparison. This is helpful when comparing 
sequences of different sizes as the ends of 
smaller length DNA sequences can be padded 
with offs. A match is indicated by the block when 
the query and stored bases are identical, when 

 

 
 

Fig. 2. A 16-word CAM organization 

  Base   Bit    Codon 

Sequence 1 

Sequence 2 

Sequence 3 

Sequence 16 
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one of the two is a base and the other a  don’t 
care.  Additionally if one is off, no match should 
occur.  For example: 
 

query stored Match 
A C 0 
G G 1 
T don’t care 1 
C off 0 
don’t care 
off 

C 
G 

1 
0 

     

Bases and special conditions are encoded using 
three bits. The leftmost bit of the sequence 

functions as a flag that indicates whether a base 
(0) or a special condition (1), is being 
represented.  Assignments within the base 
category are not subject to any design 
constraints and are made as follows: 

 

000 = A 001 = C        010 = G      011 = T 

 

The two special conditions,don’t care and off, are 
assigned as follows: 

 

10X = don’t care 11X = off 

 

 
 

Fig. 3. A 3-bit CAM block 
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The data storage in the CAM is realized using D 
flip-flops; EX-NOR gates are utilized to compare 
the stored data sequence in the flip-flops with the 
query sequence (Fig.4). An output of 1 from an 
EX-NOR gate indicates a match of a single bit.  If 
a match is signaled for all three bits, then a 
preliminary match is assumed for the two bases 
being compared.   
 

 
 

Fig. 4 Comparison logic for 1-bit  
 

While the query and stored sequences are being 
compared for exact bit matches, simultaneous 
checks for don’t care and off values are also 
performed. Values of 1 and 0 are returned by the 
don’t care (DC) check and off (OFF) check logic 
respectively, if their corresponding conditions are 
detected (Fig. 3). A logical OR operation is 
performed on the results of the query don’t care 
check, the stored don’t care check and the 
preliminary match results.  In this way, the 
presence of a don’t care can overrule an exact 
base mismatch. The final stage in generating the 
match signal takes into account the possibility 
that one of the bases was off. 

 

The preliminary match results are allowed to 
pass through if the logical AND of the OR output 
and the off check indicates that both sequences 
are on.  Otherwise, the base-match signal is 
forced to 0 and all other considerations are 
overruled.  The emerging signal is a binary 
match/no-match and is passed up the hierarchy 
to the codon-level for further handling. 

 

4. MATCHING OF CODONS 
 

Sequence comparison at the codon level is 
shown in Fig. 5. A comparison of the query and 
stored codons results in a two-bit match value. 
The same three bases, in the same order, are 
termed a complete match.  When only two of the 
three bases are found to match in corresponding 
positions, a partial match has occurred as 
indicated below: 

query stored match 
ATG CGT No 
ATG ACG Partial  
ATG ATG Complete 

 
The ability to recognize a partial match is useful 
in detecting related sequences. Because multiple 
codons can identify a particular amino acid, and 
those codons typically vary by a single base, 
being able to detect two of three matching bases 
allows for a match on codons that may have 
equivalent values. 
 
The presence of a match is indicated by the least 
significant bit of match result. This bit is the 
output of a majority circuit fed by the outgoing 
match lines from the codon’s three constituent 
bases. Whether that match is partial or complete 
is revealed by the most significant bit, a logical 
AND of the three base match lines. The coding 
scheme is as follows: 
 
00: no match 01: partial match 11: complete 
match. 
 
An output of 10 indicates a contradiction, that the 
three bit sequence has both three 1s and a 
majority value of 0. This pattern should therefore 
never occur. The remaining valid match codes 
are passed upwards to the sequence level upon 
generation. 
 

5. FULL SEQUENCE COMPARISON 
 
At the sequence level, the CAM architecture 
begins taking user-specifiable values into 
account when generating match signals as 
shown in Fig. 5. The ability to customize the 
sensitivity of the CAM allows for the search 
criteria to be better suited to the makeup of the 
data.  For example, in a comparison of highly 
similar sequences a high threshold is useful to 
prevent being overwhelmed with matches. It is 
likewise helpful to avoid a complete lack of 
matches in sequence comparisons involving less 
similar entries.   
 
To accommodate this feature, the sequence level 
CAM module features additional logic to count 
the number of matches occurring in the 16 codon 
modules, and then compare that value with a 
user-configurable threshold value. The match 
counting logic works by taking as inputs the 16 
two-bit values indicating the match types present 
in each of the codon level modules. A threshold 
select line controls whether partial or complete 
matches will be accepted.  A value of 0 on the 

query 

   

stored 

match 
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threshold select line indicates that a partial match 
is sufficient. For a partial or a complete match, 
the output is a 1 on the match line.  A value of 1 
on the threshold select line indicates that only 
complete matches are acceptable; in this case, 

complete matches result in an output of 1 on the 
match line and a 0 output for either partial 
matches or non-matches. The logic that 
accomplishes this is shown in Fig. 6. 

 

 
 

Fig. 5. Matching codons in CAM 
 

 
 

Fig. 6. Codon matching logic 
 

match 

 

Least Significant Bit 

Threshold Select 
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Fig. 7. Match Counter Organization 

 

This logic is repeated in parallel for each of the 
16 codon modules. Once the partial/complete 
match threshold has been taken into account, the 
match count logic uses a tree of adders as 
shown in Fig. 7 above to determine the number 
of match signals with a value of 1. The        
output lines from each codon matching logic 
block (Fig. 6) are fed into the A, B, and carry-In 
lines of 1-bit full adders. The 2-bit results are 
passed down to a row of 2- bit adders that also 
make use of their carry-in lines.  This continues 
down through 3-bit adders and then 4 bit adders 
until the final 5-bit result holding the number of 
active match lines is available. 

 

6. CONCLUSIONS 
 

Sequence alignment and matching using 
currently available software-based techniques 
are computationally intensive and time-
consuming. The CAM architecture proposed in 
this paper can speed up these tasks by making 
initial comparisons, and reducing the sequence 
set to be considered to a more manageable size. 
Thus a possible application of the proposed 

CAM-based methodology could be as a 
preliminary filter for a more exhaustive later 
comparison.  The prescreening of sequences 
can take place as a global alignment in the case 
of very high similarity sequences, or as a local 
alignment between a subsequence of the query 
sequence and the stored sequences. The later 
alignment, between a query subsequence and 
multiple stored sequences, constitutes an 
important application in its own right. In order to 
take advantages of the speed and parallelism 
offered by the customized CAM implementation, 
new sequence alignment and matching 
algorithms need to be developed. 
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